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Abstract

A Study a2nd Hodel of Huuwan

Indexing Behavior
Caryl McAllister

This dissertation examines the relationships between a
document being indexed and the index terms assigned to that
document in an attempt to quantify the extent vf "machine-
like" indexing occurring when librarians and scientists index
technical text..

A number of possible relationships between the teixt and
the index assiguments are Ppredicated and tested with ¢two
models: a multiple 1linear regression model and a Boolean
combinatorial model. The models test ¢two classes of
relationships £or the best relationship in that class. Both
models find and correlate textual evidence in the document
for a given index term with the descriptors assigned by the
indexers. In all, some sixty typass of textual evidence (or
clues) are considered.

For the experiment twelve indexers were divided into two
groups of six each:. professional librarians and enginenrs or
scientists. . Each subiject indexed al:z twenty sample
documents. There was a significant difference between the
amount of librarian indexing and the amount of
engineer/scientist indexing accounted for. . Although the

difference was not great, the engineers and scientists proved
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to be less predictahle than the librarians on the basis of
the textual clues.

Over the entire sample of documents and for all indexers,
the regression model accounts for about 30% of the indexing.
For a single document, however, as much as u0 to 80% of the
indexing can be explained by tha regression model. The
location and type of textual clue deemed important by the
indexers varies considerably from document to document.
Hence variations in clue "style™ amcny documents lowers the
overall percentage because vhe entire sample is a compromise
position for all the documents.

Regressions run on four single indexers shew a very small
correlation between cluves and indexing ranging from 7 to 22%.
Individually the indexers are less predictable . then the
group. ‘

The information from the Bonlean combinatérial model is
less comprehensive primarily because not encugh computer time
was available for a full development of the model. Based con
a one-third sample; the model correctly predicted about 65%
of all indexing'decisions. No other combinatorial runs were
rade.

It is concluded +that ‘indexers in general d6 not index
technical text in a "machine-like® fashion and that wneither

model is useful as a general predictor of human indexing.
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Chapter One
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1. Introduction

The information explosion is 7 widely recognized
phenromenon. Increasing numbers of people engaged in researc™
have produced increasing numbers of papers reporting that
research. Libraries, engaged in the business of making that
reseawch available on demand, must process increasing numbers
of such documents. This processindg remains a major 1library

bottleneck.

ITn addition to the investment in clerical labor and
papervork ¢ acquire a dccument, a library often wmust also
spend professional labor indexing it. This indexing makes it
possible for éatrons to f£ind the particular items they want
in a 1large collection without having to read the entire
collection. The document and the index entries for a
document are stored in some convenrnient place so that someone
wishing to use the library or information center may Search

the indexes to locate it,

Two tools have been developed to aid indexers: indexing
rules and lists of approved index headings. While both rules
and headings are commonly available to aid imn author
indexing, subject indexing is quite dnother story. tere,
lists of approved headings (also calledv thesauri) are
plentiful, but there are only vague and imprecise notions of
how an indexer should go about choosing the most approepriate

headings out of ¢the approved list for the document at hand.

@



Even though a large part of a document retrieval systenm's
resources are devoted to this task, the question of how
people db subject indexing has been the subject of much
conjecture and only a 1little experimentation. There have
long been arguments in the literature abocut the educational
requirements for indexers. If indexers do little more than
copy words from the document, we shculdn't be paying
graduate-level subject experts to do the job, On the other
hand, if indexers are€ involved in some rather sophisticated
decision-making, we shguldn't be talking so glibly about

substituting machines for people.

Only in biémedicine has anyone attempted even a partial
answer to the guestion of how people go about indéxing. Yzt
none of ‘the biomedical studies has been conclusive enough to
answer the guestion_even for that particular fieid. And no-
one has tried ~the experiment for 1less 1idiosyncratic

literature than medicine.

For ‘some time,. researchers interested in automatic
indexing have been proposing that machines should choose
index terms on " the basis of machine-recognizable textual
clues present in the text. Such clues as noun phrases, word
ITequency or location, word stems and synonyms have been
suggested.. If textual clues accecunt for a large part of a
human indexer's behavior, then it might be feasible to
automate indexing.  And if this behavior can be modelled. the

model couid form the basis for Jjust such an automatic

indexing system. If, on +the other hand, mechanically-

H
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recognizabl® clues do not account for a large part of a human
indexer's behavior, automatic indexers would have to go

beyond simple textual clues to do human-like indexing.

Because of the strcng interest in machine-~recognizable
textual clues for automatic indexing, because of the numerous
suggestions that human indexers do little more than word
matching, and because a very large proporticn of any
reference retrieval system's budget is invested in indexing,

this thesis attempts to ansvwer the gnestiont To what exten

let

=

do machine-recggnizable textual <lues account £or hzuma

indexer behavior?

To highlight the influence of training on indexing, ve
use ijndexers of two kinds: iibrarisn-indexers, who by
training and experience ought to know: how fo go about
indexing, and scientist-indexers, who Dby training and
experiende ought to be most familiar with the subject,ﬁatter
to be indexed. Differences in indexing behavior between the
two groups are of interest. We are also interested in the
textual clues themselves and attempt to isolate those clues
which contribute mest to the explanation of humaﬁ indexing.
To do this effectively, a large number of clues and selection

rules are covered systematically.

Chapter 2 reviews previous studies of human indexing and
the indexing rules that have been suggested for automatic
indexing. . Besides surveying commonly dquoted buman rules,

this chapter points out that rules used by humans are not, in

il
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fact, rules but general behavioral guidelines. The
discussion of‘previous models of human 1indexing behavior
" points out the strengths and weaknesses of these studies.
The analysis of rules used for automatic indexers sShows the
variety of rules discussed in the litegature and suggests the
types of textual clues which should be accounted for in the
indexing models. The textual clues and the assignment rules

used in the ' 10 models are discussed in this chap+ter.

The .2 nodels developed in “he thesis are presented in
Chapters 3 rn. 4. The first is a wmultiple linear recgression
model chosen for its statistical and predictive pro;=rties.
The second is a combinatorial model which is used to test
many of ¢the cluss summarized in the second chépter. Each
model has advantages and disadvantages. Taken together, they
corplement each other. Both models quantify the extent to
vhich machine-recognizable textuél clues account for indexer
behavior. Either can act in'a predictive manner. Chapter 3
presents the regression model, statistical tests feor
regression and the computer program used for regression.
Chapter 4 presents the same informaticm for the combinatorial

model.

Chapter 5 discusses the experimental procedures and gives
descriptive informaticn about the experimental samples. The
computer programé written to obtain and analyze the data and
to calculate results are presented in some detail in this

section.



The conclusions of the thesis and suggestions for further

research are in Chapter 6.
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Chapter Two

A REVIEW OF INDEXING RULES

FOR HUMANS AND MACHINES
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2. A Review of Indexing Rules for Humans and Machines
2.1 Rules for Indexers

For the purposes of this discussion we must distinguis
between a Procedure and a Guideline. 1A Procedure is a set of
exact and detailed rules which invariably lead the perfor:-=ar
to the same outcome provided he is given the <same input.
Most computer programs are FProcedures because, given the sa=xe
input they operate on this input in exactly the same way each
time ¢to produce exactly the same output. The performer of
the Procedure need not be z machine, however. Suppose I give
7ou instructions feor getting to my house from San Francisco.
These instructions might include taking certain roads,
turning in a specified direction at certain intersections,
and so forth., If you follow these instructions, then you
will arrive at my house. There is a guarantee that if the
directions (the procedure) are followed, the result (arriving
at my house} is assured. Of course, there is no guarantee
that everyone arriving at my house has followed the same

directions to get there.

In contrast, Guidelines have no guaranteed outcome. A
Guideline is a set of warnings or cautions wvhich are not
defailed enough to invariably iead ghe rerformer to the same
outcome even when given the same input. For instance, I
might tell you té: head South; if speed is essential, take
the freeway:; watch for signs; use a map. These Guidelines

tell you to watch for signs, but don't say which signs. They

_



suggest that a map might be helpful, but don't ¢ 1 exzctly
how a map 1is to be wused or how it migh® = helrful.
Guidelines for getting to my house won't Suzran- - érrival
and they certainly wcn't guarantee that everyone 1sing then

will get to my house in the same vavy.

Let wus draw ' the analogy to human indexing. lenti. n is
made in the literature of "indexing rules". Thes: :rles are,
in fact, Guidelines, not Procedures. They do not guacantee

that anyone who follows them will arrive at the sare index

4

set. . Proof of +this mwmay be found in indexinc corsensus
studies (Hooper (1965), St. laurent ¢1966)) where +he same
instruvctions, thesaurus vocabulary and documer :s =zlmost
invariably lead ¢to different index sets when used by
different indexers or even +the ~same indexer at different
times. ¥e will review some of these indexing guidelines here

because they are important for understanding how indexers goc

about their task.

Based on experience with chemical litera~ure 3in an
industrial company, Carcl Fenn (1962) outlines indexing as
the search for answers <o four groups of questiofiz. Penn
says the indexer first asks "What inforwation is im +this
document, how is it organized, aud into how many intellectual
components is it subdivided?" No procedure is given for
deciding what comnstitutes "information", but Penn suggests

that the indexer read the most condensed docnment statement

. First . (the title), and then work toward the most narrative

(the abstract, then paragraph headings, and finally the full

R
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document) . This suggestion is, in part, a procedure because
jt tells the indexem where and in what order to 1look. It
does not, however, tell the indexer what to look for or when

to stop looking.

The second guestion is: "How are the overall document
and each of its component subdivisions related to or
jdentified with the current and anticipated activities of the
users?" This is an identification of the information £rom
the point of view of the user as well 'as the author. The

terminolagy of the author is put into relationship with the

accepted terminclogy of the user dJroup. Buc the terms
"component subdivisions", and ‘"current and anticipated
activities of the users" are . not defined, nor are any

instructions given for finding out just what these current or
anticipated activities might Dbe. In 6rder‘ to estimate
botential usefulness, indexers would have to estimate the
likelihood that a project might be undertaken. But to expect
indexers to predict the course of scientific investigation is
to +turn <hem into managers of scientific projects. This
second rﬁle, therefore, serves primarily as a warning to

jndexers +that the needs of the users are an important factor

in a reference retrieval system.

Th~ next guestion is:? | "How new, how reusablé or how
originel is the information in each conponent?”" Penn argues
that if the indexers caunot judge which information the users
will consider new aﬁd interesting, then the indexing depth

will be +too great or too shallow. This rule requires that

17
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the indexer know the state of knowledge of present and future
system users. This is an obviously impossible condition, yet
it pcints to a common-sens® notion that indexers shouldn't be
indexing the obviocus. The difficulty lies in deciding what

is and wvhat is net obvious.

To answer the last guestion: "How should information be
described?" the indexer rephrases the mental picture of the
document 1into descriptors from the thesaurus. If, indeed,
the document is understood, then the indexer does have some
jdea o©f what the author is= sayvying - he has a mental picture
of the subject (s) of the document. But this does not assure
that two indexérs will have identical mental pictures ncr
does it assure that the interpretation of this mehtal picture

into index terms will produce identical results.

In general, then, Penn's rules are cautions to warn the
indexer that the subject content of a document, | the
activities and the subject czxpertise of the users, and the
thesaurus vocabulary of the system are important and should
be considered when indexing.’ But these cautions do not

consitute a Proczdure. .

Other published indexing rules @are similar to Penn's,
Beirnier (1965, 326) suggests the followiqg: 1b) choose ‘to
index those subjects which are novel, emphasized, or
extensively revievwed, 2) inilex to the maximum specificity
warranted by the author,. 3) choose those terms most

frequently used in the field, &) prbvide guidance {cross-



references) among headings and from synonyms, 5S) check all
index entries for accuracy, 6) use modifying phrases to make
subject terms more specific and to-provide better guidance,
Again, these are cautions to the indexer about subjects ¢that
are novel, the maximum level of indexing specificity, etc.
Bernier's rules substantiate the fact that so-called indexing
rules are not procedural. Rees (1962 and MacMillan and Uelt

(1961} agree.

We have pointed out <the vagueness and imprecision
inherent in the indexing "rules" to be found in the
literature. The business of indexing is no more procedural

when seen from a philosophical point of view. Wilson (1968)
discusses several wvways one might determine the subject of a
document. Fer instance, an indexer might list, sentence by
sentence, what a document was about. The 1list could
justifiably include the names of the objects mentioned in
each sentence, or the names of the concepts employved by the
author in expounding on his subject, or +the names -of the
thihgs or individuals indirectly referred to, or any
combination of these. While it is possible to Tecognize
obviously wrong entries on this 1list, knowipé what - is
obviously wrong does not resolve the many occasions vwhen
indexers can differ considerably in acceptable indexing

assignments. Wilson's arguments pcint out, once again, that

indexers are operating with Guidelines.

In conclusion then, we have seen t =t the indexing rules

humans profess to use are not Proceducses, but Guidelines,

19
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Indexing rules may give general guidance; they do not
constitute a how-to-do-it course, According to the dictates
of +the indexing profession, indexing 4is an art, not a
sScience. Consciously, at lezast, human indexing invclves a
great deal of judgement, subject evpertise, knowledge of the
users and of the document retrieval system. None of <these
things is easily - automated by present day standards of

artificial intelligence.

This is not to say that¢ we cannot use a Procedure to
mimic human indexing. As the next section demonstrates, what
indexers do and what they say they do may be quite different

things.



14
2.2 Results of Human Indexing -

Instead of investigating what indexers say they do, sone
experimenters have tried to find out what dindexers do by
looking at the index sets produced. Studies of this kind
cannot claim to have investigated the paths indexers used +to
arrive at a particular index set. However, possible
hypothetical mechanisms for reaching a particular index set
can be investigazed and the outccme of these artificial rules

can be compared with the outcome of human indexing.

Fels and Jacobs (1963) were interested in the exient to
which indexers became "iinguistically creative® when
indexing. They defined three sources of indexihg terms: 1)
wbrds wcecurring in the text, 2} synonyms for text words, and
3) paraphrases of the text. These types.of index terms are
increasingly 'creativevw, Using random samples taken from
state and federal statutes, straight term selectioas
constituted 63 to 91% of the index set, synonym substitutions
ranged from .5 +to0o 5,.8% and paraphrases from 7.4 to 33.7%.
The statistics quotéd indicate that legal indexers, at any
rate, are not particula;iy' creative 1inguistic&11y. Note
that although this study indicates where the indexing wvords

canme from, it does not indicate how the indexers arrived at

particular index entries.

A study by Montgcmery and Swanson ({1962) strongly

substantiates Fels and Jacobs, TYhey chose smbject headings

at random from ;ndeg' Medicus. Each of the titles indexed

21
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under each of these headings was compared with +the heading
itself. 1In 86% of the cases the sybject heading or a synonynm

for it, appeared in the title.

.O*Connor {(1364) later disagreed with the Montgomery-

Swanson study. He argued that it ignored subdivisions of

Lr
[
1Al

sa ct headiags and used synonyms inconsistently to obtain
the high degree of matching. To substantiate his points, he
tried the Montgémery-Swanson indexing rules on titles from
three medical indexing systems. Based on samples' of 50
titles from each of the systems, the heading—title
‘correlation in these samples ranged from 19 +to #%% in the
first system, from 40 to 68% in the second, and from 13 to
39% in the third. This is 1in sharp contrast tb the 86%
agreement obtained by Montgomery and Swvanson. At least as
far as medical text is concerned, there is 1little agrzement

on the profitability of using title words and their synonyms

as an artificial procedure for imitating human indexing.

)
)

ies have been made of indexing in engineering.

-=
AN,

]
ok

A few

e
¢

Slamecka and Zunde (1963) found 80% of the hamanly-assigned

index terms in the abstracts of 30 documents from Scientific

and Technical Aerospace Reports. Bottle (1970) compared +the

titles cf articles with humanly-assigned subject headings for

each article. Titles were chosen from Applied Science and

Technology, British Technology Index and Engineering Index.

From 48 to 68% of the titles either matched the assigned
heading or contained a syntactic variant or a synoanym for it.

Graves and Helander {1970) compared +titles and abstracts



16

taken from Petroleum Abstracts with <the humanly-assigned
index terms. Exact and synonym miatches accounted for u0% of
the humanly-assigned index terms. Although each of these
sT:. “@s was in the same general subject area of engineering,
the percentage of human index terms accounted for ranged from

40 to 80%.

The studies discussed up to this point investigated

possible mechanisms for arriving at the same indexing humans

produced. A1l of +the studies worked from the already-
assigned index set backwards to the text. In effect, this
approach covers o¢nly half of the problewm. It accounts for

where the 1index term came fromg it provides a textual
justification for the assignment of each index term. But it
does not tell how manj matches with other subject headings
might have occurred. For instance, suppose “he title "Real-
time Input Preprocessor for a Pattern FKecognition Computer"
were compared with the subiject heading "Pattern recognition®,
There is an exact match betweenh the sybiject heading- and a
portion of the title. This would be counted as one instance
of an exact thesaurus-title match in the studies discussed
above, But this same title also matches two other subject
headings: "Real=-time computer systems" and "Input
preprocessors for computers". These matches were ignored by
the above studies. Although these studies kept track of the
index terms or.subject headings which were assigned, they d4id
not try to explain why other terms were not assigned. Both

explanations are required in a complete model,



In later experiments, O'Connor tried several met hods for

cbtaining manvally assigned index terms from #ull document

text (1%61, 1962, 1965y , He chose +two index terms,
*toxicity?® and ‘*peniciliine®, from the thesaurus of arn
Ooperational 10,000~document ‘ systenm, He then <%ried td
formulate rales for assigning the documents to the

approptiate Subject heading without assigning cther documents
in the collection to %that subject heading, In +the end, a
quite complicated indexing rule was formulated for each
thesaurns term. These rules, while assigning “toxicity* to
most of the toxicity papers, alszo assigned"toxicity' to non-
toxicity papers. To counteract the over~assignment, vithout
causing conéomitant under-assignment, C'Connor used minimunm
frequency requirements, location of the toxicity  clue in

specific parts of the document, etc.

The rules hformulated on an initial group of toxicity
papers were then tested on a second group of papers from the
same system. They correctly selected 92% of the toxicity
papers, at the cost of over-assigning vtoxicity® to i8% of
the non-*toxicity' papers. The  computer-simulated rules were
ccmparable'with the system®s regular human indexers who
correctly assigned about 80% of the toxicity papers with a 2%

over-assignment. .

A similar procedure vas folloved for the ternm
*penicillin®' resulting in another set of simulated computer-
assignment rules, These rules correctly selected 97% of the

penicillin papers at the cost of a Uu4% over-assignment. In

24
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contrast, indexers correctly assigned about 75% o:

and over-assigned less than 2%.

Although the artificial indexing rules O*Connor devised
work quite well for *peniciliin®' and 'toxicity', there are
some difficulties with his scheme. Pirst, because each
thesaurus term requires a different =rTule, the 1invention,
programming and use ©f such rules for @ real-life thesaurus
(say, 20,200 terms) is almost a r©ractical impossibility.

Second, the two sample =Zex terms selected for study were

both single wcords, and wzre posted on a rather high
properticen of the ceolls-*~icn®s dczuaents {(1500/70,000 for
toxicity and 700,110,000 f:2 -2nicilliny. Such heavy posting

is most unusual and occu. 3 on fewer than 2 or'3 percent of
the terms even in very larc= collections (Houston and Wall
(19604y) . Third, the study was done on bjomedical literature
which +typically has a well Ade€fined and very specific
vocabulary. There is nothing comparable to O?Connor's list
of disorders in the vocabulary of engineering, and one might
expect indexidg rules to be different when the vocabulary is

less precise.

In conclusion, {here are several major objections to most
of the studies we have discuséeﬁ: the particular human
indexing chosen as a stahdard,- the questioﬁ of over ~
assignment, and the investigation of only a few possible
artificial rules. In each of these studies, the human

indexing which acted as the standard was not all done by <he

same person or dgrcup of peopie. This is an important point

20
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because of the effect it has on the rules the experimenter
devises to -account. for the indexer's behavior, Let us
suppose that twe indexers have rather different indexing
practices. One of them (Indexer One) assigns an index tern
only if an exact match for a thesaurus phrase occurs one or
more times in the document. The éther (Indexer Tvwo) assigns
the term only if the exact match occurs two or more —=imes,
Ncw suppose that Indexer One indexes X percent of the sample
documents, and that Indexer Two does the remaining ¥ percent.

The experinenter could conme up with a rule which says "assign

£ it coeurs at least two times in tha document",

[ds

the term

This rule .will omit wp to X percent of thea assignments., 7If
the experimenter decides the ruie Shonrid be "agsign “he ' term
if it occurs one or more times ir the document®, then he will
he over-assigning in up to X percent of the cases. If many
indexers and many indexer assignment rules are involved, the
hypothetical assignment rule devised by the experimenter is
very deperndent upon the particular mix of people who did the

indexing.

There are two ways to deal with this problen. First, all
the dAocuments could be indeied by +the same person, The
experimenter would then be looking for a tule to explain the
behavior of a singie indexer. The second possibility is to
have all the docuﬁents indexed by each of a group of people.
This leads the experimenter to an explanation of an %averagemn
type of indexing, Since an individual indexer is unlikely to
be following any rule consistently, the averaging wowld give

an opportunity for individual variations to cancel out.

2B



The second major osjecticn to most of the studies
discussed above is that they have ignored or plaved dcwn the
efferts oF over-~assignment. The artificial yvule must -ccount
for the non-assignment of terms as well as the assign :nt of
term. . This difficulty was .discussed above in connection
with‘the Fels and Jaccbs and the Montgomery and 3wanson

stud_es,

Third, there has been no systematic investigat..on of a

broz i gspectrum of possibl= hypothetical indexing ru 3. As
Section 2,4 dexcnstra-as, a combination rvie (clus (ne AND
clu- two) is very selZom employed. Investigatic: of a

broader range of rules would make it rossibl:s to =ay just how

complex an artificial rule must be to imitate human indexing,

Despite the assurances of an occasional devotee (Salton
(1970)), there is no clear evidence that human indexing 1is
"machine-like". The models proposed in this thesis are
intended to investigate two general types of mnachine-like
rules to determinre whether they do account for a largde

percentage of human indexing behavicr.
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2.3 Rules for Automatic Indexing

Hrpothetical indexing rules have >een suggest=. for
purposes other than imitating human indexing: mach cZ +the
literature on automatic or mechanicail {ndexing cons:i =ts of
tests of such hypothetical rules. TInste:d of surveyi: the
literzture of vautomatic indexing whiciy has been re-il=wed
exhaustively and competently by Stevens {1970y, we will +ry
to summarize the +types of rules prciosed for autmmatic

indexers,

The automatic indexing rules mentioned in the lite- - -=ure
break down naturally into four generai areas: ' 1) syn:actic
clues, 2) statistical clues, 3) textual clues and 4)
assignment rules, In this section we will chatacterize the
three types of clues and cite exatples of each type. Section
2.4 Jdiscusses the assignment rules, He are | primarily
concerned with the textual c¢lues and the assignhment ruies
because they provide a basis for understanding the models

used in Chapters 3 and 4.
2.3.1 Syntactic Clues

Syntactic analysis makes a- first step toward
understanding the meaning of text by unravelling the text's
grammatical structure. Syntactic <clues are chosen on the
basis of knowledge of this grammatical structure, An
automatic analyzér finds the part of speech of each word in

the text as it parses the sentence. Unfortunately, this is

28



not = simple process. Syntactic analyzers are often quite
compl.cated programs which can groduce a number of alternate
r==f. 3¢ of 2 single sentence. Dealing with two sentences is
beyc.i the abilities of most existing programs unless the
vocabulary and grammatical structures are severely limited.
Althouglk Harris {1959) talked of kernaliéation of sSentences
and replacement of pronouns in 1959, only recently have there
Fe2n fT-ograms which can actually perform some of these feats

{

n

h TO, et.al, {1969)). In fact, artificial intelligence

’;f.

I‘J

P

exnszimenters count the understanding of small portions of
text about calculus a major success (Simmons (1970) 21) mainly

beczuse of syntactic rroblenms,

There have been automatic indexing expe:;ments with
syntactic analyzers designed to search for specific types of
syntactic clues, however._ Baxendale (1958, 1962), Baxendale
and Clarke (1966) and Clarke and wWall (1965) identified - noun
phrases .in nztural language text with an accuracy of 91%.
Unfortunately, this progfam has never become part- of an
antomatic indexer. Klingbiel (196¢, 1971} designed a progran
to read in natural language text, locate phrases which could
serve as potential index terms, and display these.phrases tc
a human inde#er., The human was expected to make the final
indexing decision. . This analyzer recognized 3just thirteen

syntactic types.

While syntactic information will no doubt be an important

automatic indexing technique in future years, for the prese=*
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_% is more talked-about than practiced. This clue type 1is

rot included in either of the models in this thesis.
Z23.2 Statistical Clues

The statistical methods of isclating clues are really
~ethods for locating éontent~bearing words in naturél
_anguage text. Large quantities of text must b" processed -
21sually by truncation and <counting - to giJe statistical
information ahout the freguency cf cccurrence of text words
in the language 28 a whole. The object is to 1locate ﬁords

which have atypical distributions in the text.

For instance, Dennis (1965, 1967) . in one of the earliest
statistical experiments dealing with text, tested a number of
statistical distributions intended to separate content -
hearing words from tl:e other words. About 3.8 million words
from 2600 reports of law cases were keypunched. Then a
number of statistical distributions were tested against +this
text to find one which characterized the content-beating
words..  The content-kearing ' woxds identified by the
distribution became the master indexing list. Every time one

of these words appeared in a document, the document vwas

assigned that word as an index term.

Damerau (1965) performed similar experiments with one
willion words of world politics news broadcasts. The object
‘48 the same: to find a statistical distribution which wouid

accurately separate content-bearing words. He found +that

3
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non-content~-bearing words (often called "functién" words) had
a Poisson distribution through the dJdocuments since these
words tended to be randomly distributed. Later, Stone (1967)
and Stone and Rubinoff (1968) tried several modified Poisson
distributions an % 70,000~-vword sampie taken from Computing
Reviews. Stone found that words with a Poisson distribution,
since they occur randomly, are non-specialty or uninformative
words.' Specialty vords have non-random, non-Poisson
distributions. Stone developed +two Poisson formulas and
proved that one of them is analogous to Dennis' best

separating formula.

The identification of content-bearing vords is a first
step in the compilation ¢of a list of keywords. Aﬁd a list of
keywords can be very useful when building a thesaurus.. But
such a list does not, in itself, act as an.automatic indexer.
For this reason, statistical methods of isolating clue vords

are not included in either thesis model.

2.3.3 Textual Clues

Textual clues (also called 'machine-recognizable textual
clues* or, simply ‘clues* in this thesis) are the most common
raw material for automatic - indexing algorithms. Textual
clues are words of phrases produced by natural languaée text
or obtained from it without benefit of syntactic analysis or
statistical manipulaticns of larnge guantities of text. Since
this 4is a definition-by-default, some examples' might be

helpful.
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Many years ago Luhn (1957) suggested the use.of iocation
as a textual clue. Words occurring in the title wvere
supposed to be more likely to be good descriﬁtors than words
occurring in the body of fhe document. Other suggestions
have bheen 'made for locations of textual clues. Baxendale
(1958) thought the first and last sentences in each paragraph
were good. O'Connor (1965) tried the first and 1last
paragraphs of a document. Figure 2,01 lists the wvarious
locations or combinations of 1locations tried by various
experimenters and references the jcﬁrnal article in which

each suggestion was made,

A second group of textual clﬁes centers around a match
between the text of the document and é word 1list of somre
sort, By far the most common type of matcﬁ sought is an
exact match between the document and a word lis%t or thesaurus
(see Figure 2.01) ' Fangmeyer and Lustig (196¢y and
Montgomery and Swanson (196 2) accepted a partial match
between the document and the word list, Other cxperimenters
searched for stems of words, or utilized thesaurus cross-

’

references as clues.

The last major group of textual clues is based.on
counting. Here, a count of the number of times a word is
used in a document determines whether that word is:a'clue or
not. Some experimenters (see Figure 2.01 agaiﬁ) simply take
the most frequently used words. Others take words occurring
at least ¥ times in a document, or those which constitute at

least X% of the document. This counting procedure is to be

3 2 .f;-'?
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contrasted with the procedures used to obtain statistical
clues. Statistical clues are only available from large
guantities of text (on the order of a million words). The
counting procedure discussed ahove operates only on the
document at hand. It does not depend on statistical word
distributions in the language as a whole.

-

Fach of the methods in "~ these three major groups of
textnal clues is a way to obtain information about the
subiject content of the document frcm its text. The two other
nethodes discussed 1in Sectiong 2:3.1 and 2.3.2 for obtaining
information about subject content (syntactic <clues and
statistical clues) require either rather complicated
progrémming or large dguantities of text., The textdal clues
mentioned here ara by far the most numerous clue types found
in auvtomatic indexing experimehts -'probably because they are
the eésiest clu2s to o2btain with present-day coméuters. For

this reaéan. they are the clues modelled in this thesis,

33
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2.4 Assignnent Rules

An automatic indexing algorithm is a combination of two
elementes the clues identified, and +the assignment rules.
Given a particular pattern of Clues, the assignment¢ rule
decides whether those clues result in an index term, For
example, suppose the clue-ifinding procedure looks for
thesaurus words in the document in two rlaces: the abstract
and the title, An assignment rule might be the following:
"Assign the index term‘if the thesaurus word occurs once in
the title or at least three times in the docuhent". The
assignment rule keeps track of the locations, freguencies and
types of <clues appearing in the document, When the minimum
assignment rule conditions for a particular thesaurus tern
are met, that te;m is added to the document's index set. The
assignment rulie is simply an indexing procedure operating on

textual information about the documents. ‘

Many studies have made use of very primitive assignment
rules. The most common of these is: if any textual clue

occurs, then assign the corresponding index term- (see Figure

2,02y, in some casss, several textual clue types are
involved,’ For instance, Artandi (19%69) looked for two
significant words in the same Ssentence, Montgomery ang

Swanson (1962) searched for at least one of several cluae
types. Luhn (1957 searched for words in particular
locations with high frequencies, O*'Connor (1965) developed

increasingly more complicated assignment rules for two index

3%
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terms in ¢the medical field., In fact, his assigniment rules

vere different for each index term studied.

In conclusion. we have seen that a nuamber of hypothetical
indexing rules have been proposed and itested in +the pursuit
of automatic indexing algorithms. Unfortunately for us, the
results of these automatic indexing experiments are sometimes
not evaluated at all, are evaluated only in terms of the
total number of terms in the index set, op are compared with
the output ¢f a single human indexer. Although none of the
axperimental results are. particularly useful to us in
deciding what proportion of human indexing can be accounted
for by textual clues, these studies do give us valuable
insight into hypothetical riules whichk could _ be ‘used to

imitate bhuman indexing.
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2.5 Clues and Assignment Rules Used in this Thesis

The clues and assignment rules modelled in this thesis
are extensions of those found in the literature (see Figures
2.017 and 2.02) with adaptations to accommodate the documents
actually used. For instance, since the sample documents

indexed are short and comnsist of just a title and abstract,

just two locations for the clues are distinguished: title
and abstract. On the other.hand, extensive use is made of
information from the thesaurus for identifiying clues.

Sections 2.5.1 and 2.5.2 describe and define the clues for
the regressiocn and combinatorial models. Section 2.5.3

describes the assignment rules typified by the two models.

2.5.1 Regressioh Model Clue Types

Z:i keeping with the breakdown fcund in the literaturs,

clues have been divided into three general groupings:

1 type of match (6 differemt types in group)
2 length of match (5 different lengths in group)
3 location of match (2 4ifferent locations in group) .

One element 1is +taken £frow each of the three groupings to
constitute a single clue. For example, a main »enfry
descriptor match (group -one) of a three-word'phrase (group
two) in the abstract (group three) is a sinéle clue. .There

are 6e¢5e2 or 60 possible clue types.

The three short lists below constitute a complete display

of each of the items iun the groups. A1l possible clues are
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formed by taking every possiltile combination cf matches fronm

the three groups.

Type Le gth Location

main entry three~wocvrd rhrase title

Qtem two-word phrase abstract
used~foxr term header {(2.01)
broader term modifier 2

narrover term modifier 1

related term

These sixty clue types may be thought of as a sixty-place
string of numbers. The position of the number in the string
indicates the clue type, the value of the numbér itself is
the frequency of cccurrence of that clue -, pe. For example,
the first number in the string of numbers is the position for
three-word main entry descriptor matches in the title. If a
2 occﬁrs in this location for a given document, there are
£¥Wo three-word main entry phrase matches for the thesaurus
term in the title of the document. We call this sixty-place
string of numbers a "clue vector". There is a clue vector
for each Adocument-term pair analyzed. These ciue vectors
form the basis of the multiéle regreséion model discussed in

Chapter 3.
Each of the matches is operationally defined by the

computer programs used to isolate it. A definition o¢f what

constitutes a match between the document and the thesaurus
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phrase is given below. Information on the computer progranms

may be found in Chapter 5.

To understand what is meant by each component of a clue

type, consider the following excergt from a thesaurus.-

Radiation counters

BT Measuring instruments
Radiation measuring instruments
NT Beta specitrometers
RT Dosimetelrs
Ionization chambhers

Yertical takeoff aircraft

UF convertiplanes -
where BT = broader ¢term, NT = narrower term, RT = related
termy, and OF = used for,

Main entry: the thesaurus and the document word (s) match
exactly, <character for character. A singular/plural
difference is counted as an exact match. Thus *counters' in
the thesaurus matches 'counter' or 'counters®' exactly.

Stem match: the stem of the thesaurus word and the stem
of the document word (s) match exactly.- The stem of a word.is
that part of a word to which inflectional endihgs are added
ov in which phonetic changes are made for inflection. The
thesaurus stem 'radia' matches the document stem *radia® for
such unstemmed words as °'radiation®, *radiate®, etc.

Used -For métch: the UF references in the thesaurus match

either the singular or the plural form of the word(s) in the

38
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- dancument, A used-for matc™ is counted for the thesaurus term
*vertical takeoff z2ircraf¢t? if either ‘convertiplanes' or
*convertiplane' occurs in the document.

'Broader term match: +the BT references in the thesaurus

match either the singular or the plural form of the word(s)

in the document. A broader term matchk is counted for the
thesaurus term ‘*radiation counters? if '*measuring
instruments? or ‘measuring instrument® or *radiation

measuring instruments' or- ‘'radiation  measuring instrument?®
-occurs in the document:

Narrower term match: .the NT references in the thesaurus
match either the singular or the plural form of the vord {(s)
in the document.

Related term match: +the RT references in the thesaurus
match either fhe singular of the plural form of the word(s)
in the document.

Three-word phrase: if the thesaurus ternm being tested is
a three-ﬁord phrase; and the words occur in the document with
no mwmore than oﬁe intermediate 'of' then a three-sord phrase
match has occurred. A three-word phrase match for ‘*vertical
takeoff aircraft? occurs if either ‘'vertical takeoff
aircraft' or *takeoff of vertical aircraft! or. *vertical
takeoff of aircraft' or vaircraft vertical of takeoff', etc.
occur in the document.

Two~word phrase match: if +the thesaurus: tefm being
tested is a two word phrase, and the words occur 1in the
document with nb more than one intermediate 'of' then two

word phrase match has occurred.
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Header match: if, the right-most word of a malti-word
thesaurus phrase, occurs in the document, ¢r 3if a thesaurus
entry of a single word occurs imr the document, then a head: -
match is counted. If either fdosimezers' (a thesaurus entry
of a single word) or *chambers?® (the right-mosst word of
' Tonization chambers®j) occurs in the dccument, a header match
is counted, If a thesaurus term ofAthe form 'card punches
(data processing)? occurs, the parenthesizead expgressicn 1is
ignored. . In this case *punches' is the right-most word of a
tvc-word phrase and is therefore the header.

Modifier 2 npatchs: if the second word of a three -word
thesaurus phrase, or the 1left-most word of a two-word
thesaurus phrase occurs in the document, then a modifier 2
match is counted. A modifier match for 'vertiéal takeoff
aircrafi“ is counﬁed if *takecff' occurs in the document; a
modifier 2 match <fd: ‘radiation counters' is counted if
*radiation' occurs in the docunment.

Modifier 1 matchs if the first word of a three-word
thesaurus phrase occurs in thé document, then Aa modifier
match is counted. The wofd ‘*vertical? is a modifier 1 match
for *vertical takeoff aircraft':,

Title match: if the word(s) being matched cccur in the
title, then a title match has occurred.

Abstract match: if the word(s) being matched occur in

the abstract, then an abstract matck has occurred.

The textual clues occurring in the document may be
.counted more than once. If both *vertical takeoff aircraft?

and taircraft? occur 1in the abstract, this counts as one

RN
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exact three-word phrase match inr ¢he abst.ac  auad -wd exact

i

* +der matches in the abstract. This method ©f counting

assures that each ¢lue is ccunted indepe :2nely of all

others.

2.5.2 Ccmbinatorial Model Clue Tyres

The regression model in Chapter 3 and the combinatorial
model in Chapter 4 have been tested with the same clue types.
However, the additive properties of the regressicn model and
the Boolean properties of .the combinatorial model regquire
scmewhat different repotting schemes for these clues. The
regressiocn mcdel simply records the count of +the® numbex cf
times a clue appears in the document. The combinatorial
model uses Boolean comiinations, sc the numbers in +the clue
vector must be binary {either one or 2Zero). This 1is
accomplished by translating <the single~-cell count of the
regressidn ~model into a binary record, ~ There is a zero in
the binary record if there is a =zero 1in +*he corresponding
place in the regression model record. There is a one in the
binary record if there is a number greater than zero in the
correspornding position of the regression model. The binary
ves-tor simply records which clue typeé. are present in the
doccunent. A zero value in a binary clue cell means the clue
type did nct occur in the document; a one means that.~one or

more clues of that type oczurred in the document.

This particular pattern for the binary clue vector was

chosen for t€two practical reasons: 1) for the swize of

41
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documents used 3in the samgle, there is little necéssity to
record broad frequencv ranges since high freguency clues are
not common and 2) additional clue. types increase
computational time considerably. 1In theory there is no 1imit
to the occurrence frequencies which cculd be represented by a
binary record, however. As with the regression model, <there

is cne clue vector for each document-term pair analyzed.

The following threes short lists summarize the clues used

for the combinatorial model.

Type Length Location

ﬁain entry three-wvord phrase title

stem two-word phrase abstréct
used-~-for term header (2,025
broader term modifier 2

narrower term modifier 1

rela ted term

These 1lists are identical to those in Equation 2.01 except
for the the modificaticn of the cptions in the 1location

group.

As with the regressicn model, 211 possible clues are
formed by taking every possible combination of matches from
the three groups. There are a tatal of 6e5e¢2 or 6C rossible

clues,

wn
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2.5.3 Assignment Rules Used in the lModels

The models ih Chapters 3 and 4 are intended to test a
nuuber of possible assignment rules in a systenatic fashian.
Each model tests a different class of assignment ru.les
although in a certain number of special cases the ¢two kinds

of assignment rules are mathematically eguivaient.

The class of assignment rules tested. by the combinatorial
model are a particular set of Boolean equations formed fronm
combinations of the sixty binary clues.. These Bocolean
equations are of the form (clue-type-i AND clue-type-2) OR
(clue-type-3) OR (clue-éype-u AND clue-type-5). Translated
into a model of human indexing, the above ‘equatioh would
reads: if clue-type-1 AND clue-tjpe;2 OR if clue-type-3 OR if
clue-type-4 AND c1ue~type—5_are present in the document, theq
assign the thesaurus tecrm. These eguations ére covered 1in

more detail in Chapter 4.

The class of assignment rules tested by the multiple
linear regressicn model is of a different form: Y = A <+ Bj
(namber of clue-type-l1-occurrences) + B2 (number of ciue-

type-2 occurrences) + <.. .+ By (nu

3

ber of clue -type-n

3

occurrences) . . Translated intec =z

od

®
pud

i} of human indexing,
this eqgquation would read: To a constant, A, add the
coefficient B4 multiplied by the number of times clue;typc-T
occurred; then add the coefficient' B multiplied by the

number of times clue-type-2 occurred; etc. The sum Y is the

percentage of indexers assigning the term. The multiple
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ilinear regression model lcoké for additive combinétions of
the textual clues, Bach clue is weighted arithmetically by
the coefficients so the total score for a particular term is
a sum of the fractions of all of the clues cohsidered. - (See
Section 3.2 for a detailed discussion of this weighting.)
The object of the regression calculations is to €£ind the
"best" values for the constant and coéfficients. Chapter 3

discusses the regressicn in more detail.

As mentioned above in @ certain number of special cases
¢ P ’

the Boolean c¢o2mbinatorial model and the multiple linear

regression model are egquivalent. A . branch of switching
theory, called “"threshold logic", deals with - this
equivalency. Thresheold 1logic (Lewis and Coates_(1967)i is
concerned with converting binary éircuits -'(or Boolean

equations) into threshold circuits (or a sequence of linear
equations). A number of methecds are available -for
"realizing" {(converting from Boolean to) a threshold lcyic
=2lement. All Boolean equations can be realized by one or
mere threshold 1logi: elements. However, only a few Boolean
equations may be converted to a’ single linear equation. When
just a single threshold element is needed, the Boolean
eJuation is said to be "linear..ly separable", If there are
two Boolean variables (in our case a Boolean variable is a
clue type)y then there are 16 distinct Boolean functions of
which 14 are linearily separable. If tﬁere‘are three Boolean
variables, then there are 256 distinct functions of which 104
are linearily separable. When the number of Boolean

variables is equal to or greater than 4, the percentage of
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linearily separable functions decreases rapidly (Torng (19663
20y, The equivalency betwéen the best Boolean and the‘ best
regression rodels is discussed in Section 6.2,3.

Since the regression model!l does not permit testing of
many Boolean selection rules because of the laow density of
linearily separable functions, a Boolean combinatourial model
is also desirable, In this thesis, one particular group of
Bonlean assignment rules 1is tested exhaustively to uncover

the best set of Boolean equations for the sample documents.

Both models assume that the same indexing procedure or
assignment rule applies tc all terms in the thesaurus. This
is consistent with the approach taken by ail automatic
indexing studies with the éxception of O'Ccnnor who devised a
different rule for each thesaurus term. Both ﬁodels are, of
course, dependent ﬁpon the particular clue types chosen by
the exPefimenter. Neither model can disclose the importance

of clue types not included in the model.

Iz
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2.6 Subject Experts versus librarians

If indexers do 1little more than pick good words out of
the document, then a high level of subject competence may not
be necessary. Oon the other hand, if sadexers make
intellectual decisions requiring knowledge about technical
subi=cts, rpotential users of the‘system, etc., then subject

expertise is an obvious prerequisite.

Although comparative studies have been made of author-
.ihdexers versus professicnal indexers, mo comrarison has been
made of the dependence of the two groups on the textual clues
in the document. " One would expect +that scientist-indexers
would' depend 1less on the actual words used in the doéuments
because of their greater understanding of the subject matter.
Librarian-indexers would not have the benefit of subject
familiérity and would, therefore; be more dependent upon  the

words actually used in the document when indexing,

To test this hYpothesis, two groups of indexers have been
used as subjécts for this study. The first group consisted
of six 1librarian-indexers. . Each of the librarians had an
M.L.S. degree from an accredited schocl. Each had spent some
time either indexing or cataloging in a special library in
the field of engineering or science. Tach had vworked on a
reference '‘desk ansvering gquestions frém patrons cf the sanme
kind of 1library. Fach was <familiar with the standard

scientific and engineering abstracting sjournals.
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The second dgroup cousisted ¢f six scientist-indexers.
Each of these scientists or engineers had at leagt an
undergraduate degree in engineering or the hard science:, In
some cases, the scientist hz@ an M.S. or a PhD. Each Wwas
earning a 1iving as a scientist or engineer at the time of
the study. The documents used for the experiment were in the
field of instrumentation. This topic was chosen because

scientists and engineers familiar with that subject were

available to 40 the indexing.
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Figure 2.901 Table of Textual Clues

a.

Researchers u51ng locatlon as a clue:

tltle, abstract, headlngs, text, references,
Edmundson and Wyllys {(1961)
first and last paragraphs
Luhn (1957) 315
O'Connor (1965) 499
title and first paragraph
Swanson (1963}
title, abstract, full text
Luhn (1959)

- - first and last sentences .in raragraph

Baxendale (1958)

Researchers u51ng type of match as a clue:

thesaurus or word llst matches

Artandi (1964, 1969)
Bloomfield (1966)
Fangenmeyer and Lustig ({(1969)
Harris (1957) :
Luhn (1959
‘Meyer-Uhlenried and Lustig (1963)
Montgomery and Swanson (1962)
O*'Connor (1965)
Salton (1968) 26 :
Slamecka and Zunde (1963)
Swanson (1960)
Zunde (1955}
part 7 a thesauras phrase : '
fFangenmeyer and Lustig (1969)
Montgomery and Swanson (1962)
cross-references from the thesaurus
Fangenmeyer and Lustig (19569)
stem matches
Fangenmeyer and Lustig {1969)
Luhn ¢(1958)
Salton (1968) 30-~32
Zunde (1965%)

figures

multi-part clue expression ‘with variable substitutions

O'Connor (1965)

Researchers using count and fregquency criteria as clues:

absolute frequency counts
Baxendale {1958)
Jones, Giuliano and Curtice (1970)
Luhn (19%8) _

relative fréguency counts
Artandi (1959) 218
Oo'Connor (1965) 499, 508

most frequent words
Luhn (1957, 1958)

most frequent word pairs
Baxendale {1958)
Edmundson and Wyllys (196%)

i ;.'r "
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Figure 2,02 Table of Assignment Fules

a match with the thesaurus or with a word list
Artandi (1969)
Bloomfield (1966)
Fangmeyer and Lustig (1969)
Harris (1959)
- Jones, Giuliano, Curtice (1970)
- Montgomery and Swvanson (1962)
Salton (1968) 25-u8
Zunde (1965)

most frequent words in first and last sentence
of each paragraph
Baxendale (1958)

no more than X non-significant words =epsating
significant words
"0O'*Connor (1965)

twvo significant words in the same sentence
Artandi (1969) 219

twvo significant words withiwn twe paragraphs
Luhn (1957 ‘

at least ¥ occurrences of thesaurus wvwords per
Y words of text
O*Connor (1965)

title, heading, resume and fregquency
Luhn (1957)
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Chapter Three
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3. The Multiple Linear Regressicn Maudel
3.1 Desirable Characteristics of an Indexing Model

An ideal model of textually-clued indexing would have
several properties. First, i% should answer the question
"How strong 1is the relationship between +the clues in a
dccument and the index terms assigned to that docuﬁent?" The
answer to this guestion would tell us just how much 0f +the

indexing can be accounted for on the basis of the clues.

Secondly, it should be possible to make some
statistically valid statements about the entire population of
indexers and documents with the information obtained from the
single sample. We would like to he akhle to infer that +the
relationship founad in <the sample also hﬁlds for the

population as a whole.

Thirdly, the model should be able to be used
Predictively. It should say whether a particular index term
would be assigned to an arbitrarily chosen document. This
prediction might not be just a vyves/no decision, .but could
also be, saf, a prediction of the percentage of indexérs who
would assign ﬁhe term to the document. If it turned out that
there wuwere orly a small statistical relationship between the
clues and the indexing assignments. thenrn this predictive
property +would not be of much practical importance since the

model could not functien in place of the real indexers. It,

o1
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hovwever, there were a strong statistical welationship, a

predictive medel could be substituted for the indexers.

Because of +the <capability of giving strong answers to
these requirements;‘ multiple 1linear regression has Dbeen
chosen as our first indexing model. Since this ~2del assumes
a linear relationasahip between the index terms assigned and
the clues, a second model has also been built. This model,
calied the combinatorial model, does not assume linearity.
The multiple 1linear regression model will be discussed in

this chapter and the combinatoria. model in the next.
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3.2 The Mathematics of Regressicn

This section gives a cursory explanation of multijiple
linear regression. Although many statistics (~xts treat the
sub ject, most discussions are difficult to read. The
following books may be consulted for more detailed
discussions: Hays ({(1963) usS0-577), Ferber ((1949) 3u6-379),

Ostle ((1963) 159-243) , and Draper and Smith (1966) .

Regression is a common statistical technique used ¢ show
the linear relationships among two or more variables. For
instance, we would 1like +to know wvhether the index terms
assigned to a document are related to the occurrence of
textual c¢lues in the documeﬁt. In this case, the dependent
variabl is the pefcentage of indexers . who assign a given
index +term and the independent variables are the various

tyres of machine~récognizab1e textual clues in the docunent.

Assume for the moment that several indexers individually
choose index ternss from a thesaurus for +the same document.
In effect, the indexers are voting for +the set of most
popular index terms from among +the potential‘ thesaurus
candidate terms. Some index terms wili receive many votes,
others fewer, most will receive no votes at all. Bach of the
potential thesaurus candilate ~erms considered by the indexer
group is a single experimental event. This experimental

event consisits of the (n+1) nunbers:
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1 number of times clue type 1 occurred in document,
2 number of times clue type 2 cccurred in document,
n numnber of times clue type n occurred in deocument,

n+1 percentage of indexer group voting for term.

For example, let us suppose the document indexed has the word
Ycomputers' in 1t twice and that the index term now being
considered is 'compﬁters°. If clue type 7 is the exact match
between the index term and a word in the document, then clue
type 7 oécurs twice in this document; therefore the numbér in
The seventh place in the (mn+1)-tuple is a 2. The numbers 1
threcugh n form the clue vector discussed in Section 2.5.1.
The cluc types used in the model are also 1l1listed in that

section. -

Fach experimental event is represented numerically by -n
(n+1) =tuple where n 1is +the number of knpnown dc ‘nt
characteristics. Ih this case, n is the number of types of
machine-recoynizable textual clues tested by the experiment,
The xemaining point in +the (n+17) ~tuple is the dependent

variable orxr the percentage of indexers assigning that term to

the document.

As each of +the potential thesaurus candidate terms is
consider=2d in Turn, a new {(n+1) ~tuple is produced to
represent the differing percentages of indexers who assign

Q )
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the ¢erm and the different gquantity of textual clues 1in the
document for “hat term. TE all indexers index the same

documents with the same thesaurus, then there will bhe
N = (documents indexed} ¢ (size of thesaurus) (3.01)
experimental events or (n+1)-tuples.

Each of these experimental observations THL be
represented in (n+1) -space as a sS°ngle point. The obiect of
the multiple 1linear regression is tc fit the best straight
line through these points. This line is fitted so that the
summed sguared deviations of the points from the line are

minimizeqd.

The eguation of the resulting straight Line is the

classic One:
Y = A + B1X1+ B2X2+ ees *+ BpX, .(3.02)

where A is a constant, the X*s arte the n clue types, and Y is

the proportion of indexers assigning the term,

The B*'s c¢an be thonght of as weights for each clue type

in the regression equation. Equation 3.Q02 can be re-written

ass

Ui
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Y = A4 4 B, o (clue type LB

+ B, © (clue type 2)

+

¢+ Bph ¢ (clue type n).
Here the B¥s weight the clue types so *..at the sum of each of

the terms in the equation totals tc Y.

Notice the additive nature of the effe_ts of the various
~lue types, This model says thavw an indexing decision is
vased on a weight=zd sum of all clue types, each clue type
adding its evidence to the total evidence available for that
index term. This assumpticn of linearity is basic toc the
regression model. It allows us <o £f£ind the single bést—

fitting straight line for the data.

The use of nultiple 1liisear redgression requires two
assumptions about the data. These assumptions are not needed
to c2lculate the correlaticn coefficient, but are required to
sﬁy how good the correlation coefficient is as an estimator
of +the true population coefficient and to se* confidence
intervalis. The first of these assuhptions, rormality, says
that for & given X value, the Y vélues are distributed
normally about a mean. When only a singie X value is
involved, or the values of X's <an be controlled.by‘the
experimenter, the data can be inspected to see whether - the
assumption of ncrmaiity is justified. Since our model has
many‘x's whos: Lues are not under experimental ccntrol, it

is very difficult to determine how the Y 'values are

distributed., ‘I. *turns out, hovwever, that deviations Erom

¢
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normality do not have a serious influence on the regression

model (Scheffe (1959y 350,360-368). Regression is not very

-

sensitive t0o non-normality.

However, the upper and 1lower bow .ds set on  the
ccrrelation ceefficient are very dependent upon
homoscedasticity. The homoscedasticity of a wvariable is the

degree to which its wvariance 1is constant; that is, the degree
to which the variance of Y given X is the same for all X.
Onequal variances play havoc with the setting of confidence
intervals. One way to deal with non~-homoscedasticity is to
squeeze 6ut the effect of unequal variances with
transformations of the X values. A anumber of <¢ransformations

can be made (Dixon (1370) 17-19).

One vay to examine the data for:unequal variance is to
plot the residuals cf ghe regrwession f£or each independent
variable .against the dependent variable. A residual is the
difference between the Y actually measured in the experiment
and the Y value calculated during the regression. The
calculated Y value is the approupriate point on the best-fit
line drawn by the regression through all the data points. If
the residuals for a given variable show a marked tendency to
scatter in a particular pattermn, then tr-rnsformations of the

data are probably required to assure homoscedasticity. -

The regression program used for calculations in this thesis
{(see Se¢ction 3.6) could produce the required residual .plets
on demand. Examination of the plaots ¢f residuals for the .

57
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major independent variables showed ﬁo distinct tandency in
the sca tter. Although there was a tendency ftor values to
cluster at the low end of the x-axis where the independent
variables (clue +typesy had values‘of 1 or 2, *his effect wvas
primarily due to the sparseness of:high—valued observations,.
This was due to the fact that clué§ had a tendency to occur
once, or twice, but seldom siix or eidht tines in a single
documnent. OE cburse, this meant that more da<ta waé available
on the low end of the -scale. The higher values seemed to be
randomnly scattered thoughout their ranges. For this reason,
transformations of the original data were not necess:iry to

preserve homoscedasticity.

b
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3.3 The Correlation Coefficient

The correlation coefficient, R, i a measure of the

in

- strength of the linear relationship between the index ‘terms

assigned and the textual clues in the documents.

If the distribuvtions of ¥ and Y aré similar, then R may
take on any value.from an extreme low value of -1 to an
extreme high value of +1 (Hays (1263) 510) . When the
distributions of X and ¥ are very dissimilar, these extremes
camn shfink considerably (see Carroll (1861)) . We would
expect our X and Y distributions toLbe very similar. Most of
the wvalues of these two variables will bhe zexro; a middling
number of observations will have low values - (one indexer
assigns, or a clue occurs once in a~dccumenf?; fever will
have mid-range values (sevqrai indexers assign the same term,
the same clue occurs several times); very few observations
will have‘high values {almost all indexers agree o assign, a
particular clue occuss many +times in the docuument). An
inspection of Figures 5.07 and 5.09 bears out this
expectation. The indexers in Figure 5.07 have a tendeancy to
aAke unigue assignmentss terms assigned by many indexers
occur infrequent) y. The same distribution is evident in the
totals of Figure 5.09. A particular clue type is usually a
uniqué occurrance in a document. Since the distribvutions of

X and Y in our data are very similar, R has a -1 to +1 range.

A +1 value of R means that the ¥ and ¥ variables are

perfectly positively correlated. In other weords, Y varies in

o3



wn

W

the same way &ud 3in +the same directicn as X beéause the
possible valves of X and ¥ lie on a straight 1line with a
pesitive slopes If R has a value of -1, then X and Y are
perfectly negatively correlated. This means that possible
values of X and Y iie om a straight line with a negative
slope. Between these two extrenes, R can be Zero. This
means <that X and Y are uncorrelated or linearly unassociated
#ith each other. Two completely random phtenowena exhibit a

correliation coefficient of =zero.

A correlation of +1, however, dces not mean that there is
a causal relaticonship between X and ¥, nor doesg a correlation
of =zero mean that X and Y are statistically independent. He
aré simply obsa2rving that X and Y vary in a particular

fashion, we are not saying why this variation occurs.

I£ sﬁould be noted that it is alvways possible to make R
equal to 1 by increasing the number of independent variables
to eqgqual the number of observations made. As long as the
number of variables (clue types) remains low in comparison to
the number of observations, there is nc danger of forcing the
value of ﬁ to one. Thus, our racio of 6i clue types to 6379

observations will not prejudice the value of R.

Recall from Sectiocon 3.2 that we have been using summed
sguared deviations as a measure'of th® best fit regression
- line. Again using summed squared deviaticns, the total
variance exhibited by the data is egqual to the shmmed squared

deviations o¢f the actual Y¢*s  from the average Y. This

e
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assumes that we merely averaged ail <+the data. In fact,
however, We are positing a lineaw relationship between X and
¥, so the deviations we have not been alle to explain by the
regression equation are the summed squared deviations of’the
actual Y*'s fromn the Y"s predicted by the regressicn equation.
The explained variance 4is <then the summed sguare'of the
di fference bgtween the Y's computed by the regression and the
average Y. If we divide the explained variance by the total
variance, then we have a measure of ¢the amcocunt of variance
accounted for by +the regression, or a measure of the

A

"goodress" of the rearession. This statistic is:
R2 = explained variance / total variance (32.03)

and it 1is ex¥pressed as a percentage. In fact, it is the
percentage of variance accounted for by %the regression. Note
that when R is either +1 or -1, R?2 is also one and that when

R is aimost zZero, R2 is also 1w0ost zeroc.

For onxr purposes, then, 2 is the percentage of indexing
accounted ifor by the regress Jon. As far as the regression
model is concerned, it is the percentage of indexing behavior

- whick can be accounted for by the use of textual clues.

We weuld like tc say how good the correlation coefficient
is as an estimator of the true correlation coefficient, Any
value of R may be transformed to a new variable, Z, in the
fcllowing way f/see Edwards (1967) 248-250 or Hays (1963) 530-

531).
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Z = (ln (1 + R) - 1n (1 - R)) /2. | (3.04)

Fisher (1921 has shovwn that the distribution cf 2 is very
; .

close to normal with a mean of zero and a standard deviation
£

o

1 and that 2 is independent of the sample size. The

standard error of Z is:

S =1/ - n - 1., : {3.05)

vhere N is the nuwrber of exr~rimental even+s and n the number
of variables. The correlaticn cocefficient for <the entire
population Athereforé iies between an upper bound of (Z + S e
Ky and a lower bound of (2 - S e K) where K is the percentage
cut~off point on the normal curve (for a 99% confidence
intervai, K = 2.58). These upper and lower bounds on Z may

be +transformed back. intoc R values so that a confidence

interval may be set around the correlation coefficient.

We will be comparing the correlation coefficients
btained from different experimental sub-samples and would

o
1

o

ke to test the significance of the difference between two
correlation coefficients. The Z transformation also permits

this kind of test (Edwards (1967) 250-252).

A4
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3.4 Relative Importance of Clues

The $regression program discussed in Section 3,6 adds
variables to the regression eguétion one at a time, giving
informatio&“ after each additicn about the improvement to R?
caused by each variable. It wilil therefore tell ué how much
each variable contributes to the final value of REZ,
ft is the improvement in R2 effected by a clﬁe as it
enters the regression egquation which indicates its impcrtance
in accounting for the indexing {see Section 3.3). R2
mea sures the sum of the direct and indirect effects of each
variable, A full discussion of the relative importance of
clue types in the best regression equation will bé found 4in

Section 6.3,

o
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3.5 Predicticn with the Regression Model

After the l1ine described by Eguation 3.02 has been
determined for the sample, the values obtained for the B
coefficients can be used to .predict values of ¥ for nrew
documents. Since the B coefficients describe a line wvhich is
the closest fit for the experimental points, this line is the

hest available predictcr for new dccuments.

Let ws assume we wish to index a nevw document with the
prediction function of our regression equation. For each

thesaurus descript¢or tc be considered by the model there will

be a set of X values, n per descriptor. The B coefficients

have already been calculated from the sample documents. To
estimate the percentage of indexers who will assign the first
descriptor, the appropriate B and X values are multiplied

together and the terms summed to get the value of Y,

The arithmetic is simple enoughs logic subijects the
process to sone restrictions, however. Fiegst, it would
obviousiy not be profitable to use the equation if the
correlation coefficient itself is not high. If only a small
part of indexer behavior can be accounted for by the textual
clues, then it doesn't make much sense to try to use the

clues as a substitute Lfor human indexing.

Secondly, even if the averadge R is high, there may be a

group of documen*s or terms for which the R 1is gquite 1low.

Thus it 1is important o kunsw Jjust how well the equaticn

64
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predicts assignment for each of tune sample documents. If the
predicted Y values vary w.ldly from the actual Y values for
the documents in the sample, the uvse of the regression

equatiwn for prediction is not reascnable.

Third, we must not forget that there may well be some
uncontrollable variables or some peculiar characteristics of
the sample document set or indexers which influence the wéy
clues-are used. Tt would not be fair to generalize, for
example, from a sindle sample of documents about instruments

and instrumentation to all documents in any technical field.

Fourth, it is guite possible that the predicted value of
Y may not fit our practical nctions of what makeslsénse« The
values of Y for the sample lie between zero and one (1 2 Y 2
o) because they represent the proportion of indexers
assigning the term. Since proportions may not be negative or
greater than one, negative values of Y and values of Y
greater than one cannot occur. It is possible that when the
regression equation is used on new documents, some particular
combination ¢f ¥X's will make the predicted value of Y for the
new document lie outside the zero tc one common-sense limits.,
Statistically, there is nothing wrong with a predicted ¥ < O
or ¥ > 1, If this occurs, we simply <orrect a ¥ < 0 to a

Zero and a ¥ > 1 €to a one,

6o
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3.6 Computer Program for Multiple Liaear Regression‘

The regression calculations were done vwith a stepwise
multiple regression program, BMDOZR, available =from the
University of Califorria .at Los BAngeles, Health Sciences
Computing Facility. This program calculates a series of
multiple 1linear regression equations. The program searches

for the independent variable (the clue type) with the highest

correlation with +he dependent variable (percentage of
indexers assigning). The regression equation is then
calculated. The independent variable with the next-highest

ccrrelasion with those already in the equation is then chosen
and the regression equation recalculated. Each new eguation
adds one new variable fo the calculaticns. Drapet and Snith
{(1966) 163-195) may be consulted for a discussion of various
computational procedur«s for regressions includihg stepwise

regression, .

After each variable is added to the eguaticn, the program
prints the muitiple correlation coefficient R, the coef-
ficieat of multiple determinaticn R2, the standard error of
estimate, an analysis of 'varianée taﬁle, the regression
coefficient, *+he value of F and the standard error for each
variable in the equation, and other useful statistical
information. Scatterxr plots o©of the 1residuals of each
inderendent variable against the dependent variable are also
available. The method for obtaining this stepwise
information, not ordinarily availabls, wvas éuggested by

Efroymson (1960) . The pregram will accept a maximum of 80
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variabies and 9999 experimental events or cases. Completce
documentation of the program nay be found in Dixon ((1970)

233-257 .

The regression program is written in Fortran IV {(H level)
and uses Assembly language subroutines. A regression rTun for

about 6400 experimental events and 61 variadbles reguires

St

about an hour of cpu time and from 3 to 12 hours 2lapsed time
on an IBM 360/65. Confidence intervals were calculated with

an interactive mathematical system called APL/360.

67



Chapter Four

THE COMBINATORIAL MCDEL
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4, The Combinatorial Model

4.1 Reasons for the Combinaterial HModel

The combinatorial model is intended to cover exhaustively
discussed

z- class of non-linear assignment rules of the type

in Section " 2.5.3 This model does not assume a linear
assumption of normality,

relationship nor does it make an

except in a Central Limit sense.
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4.2 Types of Indexer-Mcocdel Agreement

Let us assumé wehvhave a black box model of indexer
behavior. If this mo@el is fed +the  textual clues from a
document and a term from the thesaurus, it replies with a
vyes/no ansver. Let us also assume we have a human indexer.
If this indexer is given an index term from the thesaurus and
is asked whether that term should be assigned to a document,

he, too, can give a yes/noc answvercr.

This leads to four +types or cases of indexer-model
agreement for the assignment of a particular index term to a
particular document:

case 1} neither indexer nor mocdel assigns tetm;

case 2) both indexer and model assign tecn,

case 3) indexer assigns term, model does not,

case U4)  model assigns term, indexer does noct.’

If the model always adgdrees with the indezxerx (case 1 and case
2 only}, then it will be a perfect predictor ~f +the human.
The greater the numher of decisi - 3 and case 4

type, the worse the model is as a gredictor of the human,

Assune, for the moment, that we wish to test the ability
of a single textual clue +to predict a human indexer's
performance, - Further, assume that each sample document has
been tested for the presence or absence of this clue for each

cf five possible thesaurus tzrms and tha+t the human has also

70



registered his yes/no decision. The results of this test can

be summarized in the follcocwing way:

clue indexer case
document_and term present? decision type
document 1 ternm 1 no no case 1
document 1 term 2 vyes yes case 2
docunent 1 term 3 yes no case 4
document 1 term U no yes case 3
document 1 term S no no case 1
dccument 2 term 1 no no case 1
document 2 term 2 no no case 1
document 2 term 3 noc no case 1
document 2 term 4 no no case 1
document 2 term S yes yes "case 2

We can summarize this example as:

¢ se 1 case 2 case 3 case 4
document 1 2 1 1 1
document 2 4 1 0 0

The case 1 through 4 tota”™ . for each dcoccument igdicate how
accurafely th2 model predicts the perfcrmance of the indexer
based on a single textual clue. If the mod=l agrees with the
indexer all of the time, only case 1 and case 2 exist (as
document 2 illustratesy)., It the'mcdel is less'successful,
fhen case 3 and case 4 conditions may also exist (asS document

1 illuétrates).

71



This example has a thesaurus of 5 terms. An inérease in
thesaurus size almost necessarily increases the number of
case 1 occurrences (neither <the model nér the Aindexer
assigns) since the index set for a document is not a function
of the thesaurus size and:seldom contains more than five or
ten terms. In a larger thesaurus, the overwhelming majority
of case 1°®g cbmpletely swamp out the other cases, Such a
preponderance of agreement leads to an arithmetically
impréssiVe model, but Sinée. the case 1 agreements carry
almost no information and disguise the occurrences of the

rest of the cases, they must be dropped from the model.

For document 1, then, the model correctly predicted 1 out
of 2 non-trivial assignments {that is, non;éaSe 1 as-
signments) and thus accounted for 33% of .the indexer's
performance with a single textual clue. For docuhent 2, the
model predicted 1 out of 1 non-trivial assignments,
accounting for 1700% of the indexer's performance. The non-
érivial assignments are a measure . of how well the model
matches the indexer. The figure-of-merit for non-trivial

assignments: is calculated as:

Figure-of-merit =

(case 2) /(case 2 + case 2 + case U4). - (BWe01)

This figure-of-merit is often called a “precision ratio™ and
is commonly used in document systens to guantify the success
of the system in answering requests.. Becker and Hayes

((1963) 370-372) point out that 1Lhis measure "attaches no
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wejidht at all to agreement in O's and is therefore only
sujtavle where the proportion of 1°s to O's is 1low. Tt A1y
the most obvious defini*ion in those cases where, at any rate
in Principle, the columns are indefinitely 1long but <¢he .
nupPer of 1's in each is fixed or (statistically) limited"
(Pade 377). The O's of Becker and Hayes are our case 13
thein 1's are our cases 2 through 4, Since our thesaurus is
veryY large in compariscn to the number cf terms in a single
docthent®s index set, our situation is ar appropriate one ih

which to use Equation u4.01,

Althoygh this measure is an appropriate one for us, there
is 7othing in the combinatorial model preventing the use of &
different figufe-of-me:it. In fact, a second figﬁre-of-merit
is eénployed in Section 6,2 for the comparison of the Boolead
coOmPinatorial model and the regression model. This secon® -

figute-of-mexrit includes case 1's:

Fraction of all predictions modelled = -

(case 1 ¢+ case 2) / (all casrs). ¢ N
The £following papers may be consulted for more extensive
digsCussions of measures of nearness or ccefficients oOf

aSsOcCiation: Kuhns (1965), Jones and Curtice (1967).

We havVe «calculated the success of the single-clue model

4]

i)

o
3

in predicting ngle indexer®s behavior for two; dqcumentﬁ-
The <calcylation can be repeated for any number of documéntS.

We could then report on the average success . ot ﬁthe single~_ﬂ"

IToxt Provided by ERI
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clue mnodel in predicting that particnlar indexer®s behavior
by averaging the scores obtained for each of the individual

docurents.

We could also obtain. this average figure-of-merit for
each of a group of indexers. We could then average the
averages to obtain an over-all figure of merit to summarize
the success of the single-clue model in predicting groug

indexing behavior.

Similar calculations could be made for any other clue to
be used in the model., We could then compare the over-all
figure o# merit for each of these clue types to say which

ones did @ better 3job of predicting human indexing_'behavior.
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h.3 Bogclean Cémbinations of Clues

The Boolean combinations covered in +this section are
intended to test a group of textual clues and a class of
selection rules in am exhaustive fashion. Obviously, other
combinatorialhrules can be imagined and tried out, and other
types of.  <extual giues could also be investigated. If this

first, exhaustive trial is successful, additicnal refinements

might be worthwhile,

We will DbYe -using two types co¢f Boolean opefators to
represent two types of indexing ‘behavior. If the indexer
behaves as if both of two clue types are required to motivate
assicnment, then AND béhavior is disflayed. For - example,
sSuppose We consider the thesaurus term *radiation g o
Suppose an indexer assigns ¢the term only 1f +the wo:ild
'raaiatidn' and the word 'counters' are both present (but not
necgssariiy contiguous) in the document,. The indexer is
sayiﬁg ‘*radiation® AND *counters' lead to the assignment of
*radiation counters'. This is AND behavior. Of course, AND
behavior may combine more than two clue types in a single

expression.

If the indexer behaves as if either of two clues could
motivate him, £hen he is exhibiting oﬁ' behavior. For
example, suppose thik@ thesaurus term is 'vertical takeoff
aircraft®' and the indexer assigns the term whenever either
the term itself or a used-for reference, *cecanvertiplanest', or

both occurs in the documente. Either tvertical takeoff

owia
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aircraft® OR *convertiplanes' Jleads +to the assignment of
*vertical +takeoff aircraft?. This is OR Dbehavior. OR
hbehavior may also combine more than two cluve types in a

single ORed expression.

The exhaustive Boolean conmbination proceeds in the
following manner. First, each single-clue type is tested.
Each of +the documents in the  sample is tested for the
presence of each clue type for .each term in the thesaurus.
The presence or absence of a clue type for a thesaurus term
is recorded in a ves/no indicator. Then, as discussed in the
previous section, each indexer's behavior is compared against
the single-clue ﬁodel and the results summarized by the
average figure-of-merit discussed there. The‘_individual
indexer figure-of-merit for a. particular ciue type is
averaged to yield an over-aXl figure-of-merit for each‘single

clue. This information is saved fcr later use in +the model.

Next, the yess/no indicaters for every pair of clues are
ANDed together. This preduces a nevw yes/no indicator for the
presence or absence 6f that ANDed pair of clue types for each
theszurus ternm. Each indexer's behavior is compared against
the two-clue-ANDed-model and the results summarized by an
average figure-of-merit. The individual-inrdexer performance
figures fcr a particular clue type are averaged to yield an
over-all figure—of-me:it for cach pair of ANDed clues. This

e in he

c
"

information is also retained fcr later

combinatcrial model.




70

Next, the procedures described . abkove for use on all
single clues and all pairs of «¢lues are repeated for all
triplets and gquadruplets of clues and the information saved
for later use, Four was chosen as a maximum number for this
ANDing <step because it appeared to be well beyond the

conplenxity humans might use in clue selection.

One would expect that much ANDing of single clues would
eventually prcduce a yes/no indicator consisting of nothing
but ﬁo's or zZeros, These clue combinations cannot help in
the modelling*since there are no terms which both the indexer
and +the model agree ¢to assigﬁ (that is, there are no case
2%s) , These unfruitful clue combirations are drobped from

further consideration.

At +this stage in the procedure, we have ptoduced and
saved all possible ANDed combinétions of single, double. etc.
Clues which might have scme value later on in the model. 1In
order to have some'value, the'éémbinations must have shcwn
evidence of at least one thesaurus-term for one document for
which the ANDed clue ccmbination correctly predicted that the

indexer would assign the term.

The next step is to test all possible ORed combinations
of the clues from the AND step. Eabh of the ANDed clues will
be Oked with all the other ANDed clues. Aftey eaéh trial
ORing takes place, the overfall figure~cf-merit is calculated

for the new ORed combination under test. After pairs of
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ANDed clues have teen ORed together, triplets of ANDed clues

are ORed, then guadruplets, etc.

One would expect that much ORing of the ANDad ciues would
also eventually produce lcver av=r-~all figures-of-merit since
the incidence of indexer-model agreement-(that is, case 2, as
discusse=2d in the previcus section) can ounly inc;ease to " a
maximum of five or ten for each aocument, vhile the incidence
of indexer model disagreement (that is, case 3 and case 4 as
di=scussed in the previouS‘. section) could increase
considerably beymﬁd this, If OFin.; procduces nev trial clue
combinations with a deéreased over-all figure of merit,

further ORing of these cluses is terminated.

The end resuit of this sequence of AWDing and ORing is a
group of egquation® cf the follcwing form:

2

(C1) OR (C2 AND C3) OF (C4 BANL C5 AND C6) OR ... ~ (4.03)

where C1i throvugh C6 are arbitrary clue types. Each ANDed
element in the equation may be compcsed of a single ¢lue, or
pairs; triplets cr guadruplets ofrclues ANDed together, Any
number ©of ANDed elements may be combined with OR operator=s.
Hence the equations, and each tera within them, may be

variable,

Each of these Boolean eguations is associated with an
over-all figure-of-merit which summarizes how well that

particular equation predicts the average performance of the

s
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grcup of indexers. Because of the sequence of AANDing and
ORing opefations, these remaining Poolean equations are
guaranteed to have +the highest figure-of-nerit. This is
therefore the set of equations which most accurately predicts
how the indexers hehaved on the average. 7Tt is the best set
cf models of human indexing behavior which we can build with

the Specifiea procedure.

Ydeally, we wish to obtain the simplest model which will
predict accurately how humans index. Re are therefore
looking for the equation with the highest figure-of-merit and

with the least number of ANDed and ORed terms.
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ua.u0 Statistical Tests of the Ccmbinatcrial HModel

Statistical tests of the significance of  the
conmbinatorial model are much less complex than those for - the
regression model. The over-all figure-of-merit for the
highest ranking Boolean equation dgquantifies <the amount of
heman indexing accounted for by the textual clues. The
figure-of -merit for each of +the: eguations 1is sinmply an
averazge of all indexer bekaviar, over all documents, for all
thesaurus terms in the sampie. "To be able to make statements
about the entire population of indexers, documents and
thesaurus terms, from this sample, we use the Central ILimit
Theqrem (Ha ys (196 3) 23B-2040) to obtainr a normally
distributed population. For the Boclean equatioh‘7with the
highest average figure-of—merit, we know -hou wvell the
equation predicts the average indexing for each décnment—term
pair. If randcem scores <chosen from this largefsample are
averaged, a normal distribution is produced. From this
ﬁormal distribution the standard deviation of the sample may
be calculated. The confidence interval for vhatever

confidence coefficient we choose can then be obtained.

one of +the major points of interest is a comparison of
the scientist-indexers against the 1librarian-indexers to
determine - which group is most accurately represented by the
textual clue model., If the figures-of-merit are célculated
for <the indexing of the scientist-indexer group alone, the

Central 1limit Theorem provides standard deviatiocons just as it
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did above for the total indexer group. The calculations can

be repeated for the litrarian-indexer group.

3

he relative imPortance' of +the textual clues is
immediately available from an observation of the equations
themselves, It is of interest to know which clues are most

frequently used in the ANDed and ORed equaticns,

The predictive properties of the Boolean equations are
straightforvard. A new document is tested for the éxistence
of each of the clue types. These binary valves are plugged
intq the Boolean equation. The decision on the assignment of
each thesaurus term is "yes" if the Bcoclean equation‘returns

a value of one, and ‘no" if a zero is obtainead.

As with the regression model, we.muét use caution when
applying the model predictively. The Boolean equation is not
a universél automatic indexer just because it may account for
the human indexing behavior on a sample of documents, There
might well be special circumstances affecting our group of
documents and indexershwhich render the model inaccurate when

used on a radically different sangle,

o
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4.5 Computer Programs for the Combinatorial Model

The computer programs discussed in this section wvere
written in PL/I and run on an IBM 36C/6S. Assembly languadge
subroutines were used to denerate random numbers and to count

the number of ones in a bit string.

After the comparison of the document words wit- the
thesaurus, (“e= °~ =tion 5.2.5) .there -ere a total of 2,440
clue vector ~£ these, 6061 reco-ded no matches wita the

thesaurus and o indexer assignments for that particular
index term. In other words, the entire clue and iandexer
vector wWas Zero. ANDing and ORing of these all—zerc vectors
would not have affected +the Bgcolean model.*éq'they were
eliminated from further processiné as far as this model was
concerned. From tlie remaining 6372 anon-zero véctors, 2048
vectors were chosen randomly with the random number generator
proposed by Lewis, Goodman and Miller (1969) .- This
ﬁarticular sample size was chosen because the IBM 360
machines c¢an perform Boolean operations on a bit string of

length 2048 in a single machine instruction.

The master vector for each of these 2048 observatioans was
then read into core and organized in an array. This array
was 60 bits wide (one bit for each clue type) and 2948 bits
high (one bit for each obserﬁation on the sample}, The array
waé then <transposed so that it could be efficiently handled
in later Boolean operations. The same procedure was followved

with the 3indexer array. Reéorded in the master. vector set

o)
e
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was information about whether each indexer assigned a
particular term, or did not assign it. Each indexer's choice
of terms then could be repvesented as an array one bit
vwide(one bit +to indicate whether the term was assigned or
Vnot) and 2048 bits high (c~~= bit for each observation in the

sample) . Since there we = welve indexers, the array was

actually 12 bits wide., This =2Trey w:' * als> transpcsed so
“hat it could be ccmpared ef:i <ie-~tly -ith the clue array.

The ANDing program then :© :cess 31 the clue and indexer
array in the following manner. " @ ¢clz=2 array, hnow 2048 bits
wide by €60 high, was read into .-re. The indexer array, now
2048 bits wide by 12 high, was =zlso o ead inﬁo core. The
program then - tested +the first clue against éll twelve
indexers, It did this by ANDing the clue vector with the
first indexer®s vector and counting the number of one bits . in
the 2048 bit string. Counting was dcne with an Assembly
language éubroutine suggested by Raduchel (1970). The number
of one bits in the ANDed string equaled -the number of
observationg 5= which ‘the <¢2iua vector agreed with the indexer
- that is, the number of case 2's in the sample.  ‘This is the
numerator of the figure-of-merit. Thé sane fir;t clue was
then ORed with the same indexer vector, and the one bits in
the ORed string counted. The number of one bits in this ORed
string equaled the number of observétions in which either %he
clue +type or the indexer indicated a term shoﬁld be assigned
- that is, the number of case 2's plus case 3's plus case 4's
in +the sample. Thigs ‘'is the dencminator of the figure-of-

merit., This sequence of ANDirg and ORing a clue vector with

IToxt Provided by ERI
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.- =he . :indexer .. -vector was - repeated..forr»each of tﬁe tvwelve
-~ :indexers.. .- rhe,resulting"average;;figure-of-mefit was then

stored : with -the cl.uue pattérn and-ﬁector for-latef use in the
.-ORing program. Of.course, if . .the figure-of- it - was zero:

: .. .the vector and the information about it were discardeds

After processing the first clne vector Ln thié manner,
the program then ANDed the first clue vector uvith the second
and tested the resulting vectar against vhe indexer vectors.
It then tried ANDing in the third vectcecxr, and so forth, When
the program had tfied all possible ANDed combinations
invoiving the first clue vector, it then moved on té the
second. This ANDing sequence vwas chosen to minimize access
time in <ore. The result af this processing wasré_ftotal ‘of
5572 ANDed vectors. The best of.these vectors.had a figure-

of-merit of Q0,11517.

The ORing programs were organiza2d in a similér manner,
éxcept that there was not enough core storage or computer
time to handle all 5572 ANDed vectors. For this reason, the
best 300 ANDed vectors vere processed cne at a time against
the other ANDed -vectors. ORiné of pairs of ANDed vectors
producad a total of 45,150 ORed vectors with a high figure-
of-merit of 0,15051. OFing continued, one stage at a time,
until a maximum of eight ANDed clues had been ORed together.
The vwvector with the highest figure-of-merit was separated by

sorting and is discunssed in Chapter 6.




. The <confidence interval arcund the best figure-of-mer  t
was obtained by taking random seiections of 32 observations
from +the 2048 observations in the final best vector. Th=
individual figures-of-merit fcr each of these smaller groups
were calculated and the rTesults used to compute tu=

ccnfidence interval.
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5. E£xperimental Procedures and Samples

5.1 The Documents and Indexers

A group of scientists and engineers (see Secticn 2.6)
with experience in the field of instrumentation was available
to serve as scientist-indexerxr subijecte. To cater to their
field of speciaslization, all documents indexed by zmny of the
following terms wvere selected from the 1969 sabject index of

U.S. Government Research and Develcpment Reroxrts (USGRDR) ¢

acoustic measuring instruments, aircraft instruments,
astronomical instruments, charge mea suring instruments,
electrically powered instruments, electric measuring

instrﬁments, meteorological instruments, optical measuring
instruments, pneumatic instruments, radiation measuring
instruments, recording instruments, spacecraft instruments,
strain m2asuring instruments, | surveying instruments,
temperatute méasuging instruments, thermal measuring
inscruments, time measuring instruments, volfage measuring
instruments. Tﬁese terms are the set o0f descriptors with
*instruments' as the last word with two exceptions, surgical
instruments and musical instruments, vhich were nof included
because they fell ocutside the usuval range of instrument

sybject expertise for +he individuals involved.

The 1969 USGRDR indexes contained 78 documents iandexed
under the above terms. These documents wers arranged 1in
ascending order by the report number. A random numbexr table
was used to select twenty documents to serxrve as a test
Q ' '
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sample. The complete information for each of these twenty
documents was then keypunched directly from the USGRDR entry
(see Section 5.2.1 for details). Only the title and abstract

wvere used in the experiments discussed here. Herecafter.,  t

0]

a

=2
)]

word "vadccument" means only the title and abstract of t

document as those titles and abstracts appear in USGRDR.

Two groups indexed each of the “wenty documents. The
first group consisted of the six librarian-indexers and the
secoﬁd, the six scientist-indexers. Each indexer was givan
the same set of materials f£xom which to work. This set
consisted of 1) the titles and abstracts of each of the
documents to bea indexed in a standard printed_ format, 2)
indexing instructions and 3) the Engineers Joint Council
(EJC) Thesaurus of Engineering aﬁd Scientific Terms {(1es57) .
The standard document format was Froduced Ey a computer
program which arranged each documznt cn the page so no words
were broken at the end of a iine. Some standard information
was printed at the bottom of each éage. The documents were
printed on alternate pages so the indexer could see only a
single document at a time. See Figure 5.01 for a reduced

copy of one page of ¢his printout,

The instructions to the indexers are reproduéed in Figure
5.02. A page from the EJC Thesaurus is reproduced in Figure
5.03. The terms chosen by the indexer for each documént were
keypunched and a computer program then’ collected the
individual index sets for each of the documents and ior each

thesaurus rhrase assigned. This gprcgram provided the "terms-

=
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5.2 Clue Counting FPFrocedures

The pProblem ‘of finding, identifying and counting
particular types of clues in natural language text is common
to both of . the 3indexing mndels used in this thesis. When
even moderate numbers of clues must be located, the task
becomes much too tedious to be done accurately by hand. For
this reason, computer programs were written to f£find and count
each clue type. A1l of the .computer programs discuss: . 1in

this section were written in PL/I and run on an IBM 260,65,
5.2.1. Keypunching

Each document in <the sample was keypunched;_proof-read
and corrected, In gencsral, the {ext vas keypuhched exactly
as printed, Excepticns to +this «rule were cé_sed by the
limited keypunch character set: |

1 If the document contained a character not on the
keypunch, the wdrd . for that character was
substituted. . Thisirule was very seldom needed.

2 When words wvere broken with a hyphen over the end
of & justified line of pfinted text, the hyphen was
dropped and the word "glued together"™ again in the
kKeypunching.

3 . Subscripts and superscripts wvwere keypunched on the
line with the text.

4 A1l lower <case letters in the printed tex£ were

kevpunched as upper-~-case characters.

N
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Figure 5.04 shows the original printed versiocn of one of the
documents., The machine-printed version of this document is

shown in Figure 5.01.

A program was written to isolate each word- in the running
text. This program considered a word to ke any sequence of
the alphabetical characters (Aeee?) aunbroken by a non-
alphabetic character (0123...9p:35/07€tcC.), Since none of the
thesaurus terms c¢contained non-algphabetic characters, this
procedure did not discard any potential matches. Each of the
single words wﬁs written on a seguential file with
informatiom on the document beiny processed, the location of
that word 1in the document (titlé or abstract) and the
relative position of the word in the document (counting +the

fFirsr word in the document as one, the second word as two,

5.2:2 Reduction to Singular Formn

The matching procedure detailed in later secticns of this
chapter considers singular and plural forims of a word to be
equivalent. Each of the‘ words isolated -in the previous
section was tested for the ending *ies?, 'es® or 'sft. If a
word ended in %*ies?, this énding Wwas changéd to a 'v?: if the
word ended in 's?, the 'sY was droppeds if the wotd ended 1in
Tast the ending was dropped after sibilantse (=%, 'ss*, 'c',
;sh', etc.}. . Exceptions to these general rules were

programmed 3individually. For instance the singular forms of

91



'*pulses' and ‘mars’ do not follow the regular rules and wvere

therefore handled as exceptions.

Since the comparison had to be made between the document
and the thesaurus, the same fprocedure was follcwed for the
words from each of the thesaurus descriptors. Figure 5.05
shows thé singular form of some words frocm the document in

Figure 5.04,
5.2.3 Stemning

The root segment of each of the words was then found with
the stemming algorithm suggested by Lovins {1968) . This
algorithm searches for the longest match in a list of endings

ordered by length. If a match occars, and 1f context-

sensitive conditions associated with that ending are
satisfied, the program strips the ending from the werd. The

resulting stem is then additionally transformed with recoding

rules which handle spelling exceptions.

To minimize search time, the list of endings was hashed
with the division method (see Lum, Yuen and Dodd (1971) for a
ccocmparison and review of vqrious hashing technigues).' A
number stored at the hash location rFointed into a separate
table which resolved clashes and itemized the context-
sensitive conditions to be satisfied for each of the enaings.
If' the conditiocns weie satisfied, the recoding proce@ures
were invoked. fhe resulting stem was then paired "with the

original word in a record comprised of document number,

RS
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location, and relative posiyion. Figure 5.05 also shows the
stemmed forﬁ 6f Some words from the dccument in Figure 5.04.
The appenrdix summarizes the additions and changes to lovin's
endinés, conditions and recodiRd ruies necessitated by the

vocabulary in our sample.
5.2.4 Thesaurus Terms Used in the Models

The Engineers Joint cCouncil Thesaurus contains 17,810
descriptors. Most of the thesaurus wculd have no matches.
with any sample document and would not be assigned by any of
the indexers. Thug, most of éhe thesaurus couyld reasonably
be expected ¢to haﬁe an indexer and clue vector consisting
entirely of =zeros, These experimental pcinté would be
useless for this investigation. For this reason, the size of
the thesaurus was redquced for processing in the f£ollowing
way. First all index terms assigned by any of the indexers
to any of the doCuments were included in the thesaurus.
There were 430 of these terms. This group of terms includes,
for any particular document, all the clue vectors which have

non-zero indexer Values.

To include <°ther Qectors Wwith guaranteed non-zero clue
values in the vector, a sort and ccount was made of all the
words 3ju all the documents. Omitting functicn wbrds such as
fas', ®*a?’, 'the’, the most frequently ysed words were used to
search. the compléte EJC Thesaurus for descriptors containing
these words. DesCriptors containing these frequently used

Wwords were added to the first group cof 430 descriptors. Note
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that this procedure forces the mcdels to account fcr, not

just the assignment of descriptors, but also the non-

assignment of likely descriptors. This choice makes the

model more conservative inm ascribing machine-like behavior to

the humans. The final mini~-thesaurus contained 622 terms.
5.2.5 Document-Clue Matching Procedure

As discussed in Section 2.5, matching phrases, synonyms,
words and roots in the thesaurus and in each document were
counted to produce what we are calling a "clue vector", For
each document-descriptor pair, this clue vector summarizes

the aumber of times each clue type appears in the document.

Informaticn on the number and types of clues existing in
each document was obtained from a rprogram which compared each
descriptor in the mini-thesaurus against the words of each
document in  the samnple. The program first hashed a
document®s words 1into core storage. A single thesaurus
phrase was then read in. It was ccmpared with the words of
the document by hashing the thesauruas words and searching for
matches with the hashed document words. If matches did
occur, the clue vector for thét document-thesaurus pair was
updated with the'appropriatg informaticn and the program then
read in the next thesaurus phrase. After the entire mini-
thesaurus has been compared with the first document, the
hashing 1locaticns were cleared so that the next document's
words could be processed. This program processed a total of

12,480 vectors for the documents in abeut 30 minutes.

S J qb,
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5.3 Sub-Samples Test=d

The result of the processing described in Section 5.2 is
a set of 12,840 clue vectors, £22 clue vectors for each of
the 20 documents: in- the sample. Wé will call this set the
'*master set”. Of the 12,440 vectors, 6061 were completely
Zero 1in both . indexer assignments and clues; 6379 were non-

Zero in at least one portion of the record.

Since the  difference i- indexing nehavior betwesen
scientist-~indexers and likrarian~ir-dexers is of considerable
interest, two new sets of ST,480 -clue Tectors each were
produced for .these two groups o~ . mdexers, Each of the new
vectors sets vas tased on he 1indexing done by +*he

-‘appropriate indexer group.

Several other subsets were taken, Since many of the
stadies in Chapter 2 conéidered only the terms assigned by
t“he indexers, a subset of vectors was made by separating only
those terms which were assigned by. at least one of the
indexers. These £ vectors should show greater evidence of
‘"machine-like" indexing than the rest cf the master set, if
the effects noted in Chapter 2 hold. A second Subset was
made by separating only those terms assigned by two of more

indexers.
It is also of interest t¢ know how each document and

indexer varies: from the average. Infcrma tion on the

dccuments is obtained by processing the clue vectors for each

35
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document separately. Information on each indexer is obtaiuned
by re-running the entire model with clue vectors based only
on the indexer in guestion. These Tuns will characterize
individual documents and_indexers in detail. They might, for
instance, reveal a group of documents which are wmodelled

extrenely vell, ang a group which'<are not modelled
sucessfully. Further inspection «f these docunents may relp
to explain the success or faillure of the model. Five
documents were selected randomly for Aindividual processing:

documents 1, 2, 6, 4 and 20. Four indexers vwere selected

randomly for individual processing: 4, 6, 7, 11,

Q U
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S.4 "tatistics Describing the Pocuments and Indexers

To give the reader a feeling for the document s:mple,
some numerical parameters summarizing the incidence of =zlues
have T™een tabulated in this secticn. Tigure 5.06 gives
infofmation on the lengt: of the documents in the sample.

Figur: 5.07 Iists the numbier of terms which were assigned by

from "ne to twelve indexers. FTor example, on documet-t #,

eleve of the indexers agreed one of the ferms shc 14 be
Assig =24, while there were 26 terms assigned by just 2 "of
the rndexecs. Tizure J.08 summarizes the number ¢ _imes
each :lue type occurred iz the entire documen—= sample. Note

fhat the number of clues occurring in the title were alwvays
less than the number occurring in the abstract; - This 4s
because +the title was short in comrarisom to the absiract.
Figﬁre 5.09 gives the distribution density of all clue types
in each 2f the sample documents. For instance, of the 37,320
possible clues for each document (622 thesauyrus terms times
60 clue types) 508 clues appeared once €ach in document 1.

However, 61 clues appeared four times each in document 1.
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Figurse 5.02 Instructions for the indexers

INETET "TZONS

I:z7ine that you are a professional indexer for STAR (Scientific

Tec.-nical Aerospace Reports) or USGRDR (U.S. Gevernment Research
=nd Tevelopment Reports). Both of these indexing and abstracting
journals are distributed internationally to engineers and scientists
interested in current information in their fields.

y (4

L

Cn =zach page of the enclosed printout is =2 3document. Below the
document are numbered blank lines on which you are to record
youT choice cf indexing terms feor that document. The
teraz rust be chosen from the enclosed EJC Thesaurus of Engineering
and .cientific Terms. (If you are not familiar with this thesaurus,
see 1tz description follovwing these instructions.) Space 15

provi< =3 for up to ten indexing terms. If you wish to
asw . T more than ten terms to a document, simply write in
the additional terwm= at the bottom of the page.

Tou may find it helpful to note the important subjects while
reading cver the documant. You may use the space bmlow the
documer* for this purpose. The thesaurus can then be used to
rephrase these subjects into the appropriate index terms

on the numbered lines or below them. .

Choose the most appropriate (applicable or useful) terms from
the thesaurus for each document, Any number of terms may be
assigned. Be as specific as possible in assigning terms. Remember
you are indexing for engineers and scientists who will want to €f£ind
these documents for their own research. . The terms you assign
should enable them 0o locate pertinent information guickly.

Please keep track of the time you spend indexing. UOse the right-~
hand side of the printout page to record each time you begin
indexing in hours and winutes, for instance: begin 4:32. When
vycu are interrupted or have to guit, record the end time as
end S5:25. This job should be least imrosing if you choose a
time and a place permitting extended periocds of concentration
without disturbance,

In summary, you have two tacskss
1) Assign the best index terms to each document,
2) KReep track of all time spent indexing.

If you have any questions at any time, please call me

collect at home (415-327-0727) cor at work (U08-227-7100
ext. S435 or ext. 5611). Many thanks for your help.

Caryl

)
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5.02 Instructions for the indexers (continued)

2.7 . :IPTION OF THE EJC THESAURUS

"wo sections of the thesaurus have been marked with tabs.
Zirst section lists 211 index phrases in alphabetical

- character~by-character ignoring spaces and punctuation.
= that this is not the usual alphabetical oxder.

:.xf s appears before "Band saws" because the blank in the
=~z soréd phrase is ignored.) This section of the thesaurus
"z - T suggestions for broader terms (BT), narrower terms (NT})
e i terms (RTY. These additional terms nay be usefuvl in

--~.7ing the best indexing terms fcr the document.

and

"he second section of the thesaurus lists, in alphabetical

cr =, every word used in every index phrase in the first

£ ~lon, You will find ¢his secticn helpful if you woald 1like
©7 .ocate all index phrases containing a particular word.
Ar-raviations

used in both sections are explained in footnotes
a—- the bottom of each page.

A 100




Figure 5.03 Page

interpianetary duat 0301
Smaller than micrometeoroids
UF  Meteoroid dust
BT Interplanetary madium
RT Micrometeorsids

Space hazards

interplanotary flight 2201
BT Space flight
RT Astrodynamics

—Qrbits
Spacecraft guidance
Space exploration
—Space navigation

Interplanetary matter
USE Interplanetary medium

interplanetary medium 0301
UF Internianetary master
NT interplanetary dust
RT Intersteller matter

—Meteoroids
Micrometeoroids
Solar atmosphere
Sofar wind
Spacecraft debris
Interplanetary navigation 1707
2201
8T Navigation
Space navigation
RT Celestial navigation
Radar navigation
—Radio navigation
interplanetary plasma
USE Sotar wind
Interplanctary probes 2202
Unmanned vehicles for intarplanetary
missions; for manned interplanetary
vehicles see Interplanetary spacecraft
BT Spacecraft
Space probes
Unmaninsd spacecraft
NT wdars probas
Venus probes
RT Deep space probes
Interplanetary spacecratt
Lunar probes
—~Planets

Interplanetary spzce 0301
RT Asrospace environmant

Interplanetary spacecraft 2202
Manned vehicles for interplanetary

missions; for unmanned
interplanetary vehicles see
Intarplanetary probes
8T Manned spacecraft
Spacecraft
RT —Artificial satellites
Deep space probes
—Interplanetary probes
Lunar spacacraft
Mars probes
Rendezvous spacecraft
-—Space probes
Space stations
Venus probes

Interplanetary trajectories 2203

8T Spacecraft trajectories
Trajectories

RT Circumlunar trajectories
Earth moon trajectories
Parking orbits
Planetary orbits
Rendezvous trajectories
Transfer orbits

Interoreter routines 0902
BT Computer prograins
Computer systams programs
RT Assembler routines
Compilers
—Operating systems (compiiters)
Simulator routines
Translator routines
interpreters 0902
NT Punched card inierpreters
RT—Punched card equipment
Interrogation (502
RT —Data pnrocessing
—Intelligence
interrogator iransmitters 1702
BT Radio equipment
Radio transmitters
Transmitters
RT-—Radio receivers
Radio transponders
Interrupters (0901
BT Control equipment
Electric switches
R —Circuit breakers
Circuit protection
—Electric relays
Vacuum switches
Intersections 11302
No grade separation
UF Grade crossings
tRailroad crossings
NT Interchanges
RT Crossings
-—Highways
Ramps
-—Roads
Streets
Interservice support
USE Joint operations
and Logistics operations
and Logistics support
Interstate highway system 1302
RT—Cargo transportation -
Highway transportation
Interstels Sransporiation
—Limited access highways
Interstate transportation 1505
BT Transportation
RT—Air tranSportation
—Caigo transportation
Commercial transportation
Common cairiers
Highway transportation
Interstate highway system
Passenger transportation
Petroleum transportation
—~Pipelines
Pipeline transportation
Hail transportation
—Water transportation
Waterway transportation
Intarstallar flight
USE Space flight
Interstellar matter 0301
RT—Celestia! bodies
Cosmic gas dynamics
—Interplanetary medium
—Nebulae
interstices 1407
RT Capillarity
—Cavities
Filterability
Fluid infiltration
Percolation
Permeabitity
—Porosity
Voids
interstitials 2002 1108

9u

from the Engineers Jeint Council Thesaurus

Intestinal atresla 0605
BT Congenitai abnormatlities
Gastrointestinal diseases
Intestinal diseases
USE Gastrointestinal diseases
intes’iinal abstructions 0605
NT  Intussusception
RT Adhesions (intestines)
Appendicitis
—Benign neoplasms
Constipation
—Gastrointestinal diseases
—Hernias
Inflammation
—Neoplasms
Peritonitis
tntestines 0616
BT Digestive system
Gastrointestinal system
NT Colon (intestines)
Duodenum
lleum
Jejunum
RT Appendix (intestines)
intraceliular potentlal 0605
RT —Electrophysiologic reco: ding
Intracranial
electroencephalography 0510
0605

BT Electroencephalography
Electrophysiologic recording
RT Scalp electroencephalography
Intramuscular infusions
USE parenteral infusions
Intrastate transportation 1505
BT Transportation
RT —Air transportation
—~Cargo transportation
Commercial transportation
Highway transportation
Passenger transportation
Peatrolaum transportation
~—Pipelines
Rail transportation
—Watgar transportation
Waterway transportation
intravenous infusions
USE Parenteral infusions
intrinsic viscosity 2004
BT Rheological prapertics
Transport properties
Viscosity
RT Dynamic viscosity
Kinematic viscosity
Relative viscosity
Saybolt viscosity
Intrusive rocks O0B07
UF  Abyssal rocks
Plutonic rocks
BT !gneous rocks
Rocks
NT Diabase
Diorite
Dunite
Gabbro
Granite
Magma
Monzonite
Pagmatite
Peridotite
Porphyry
Quartz diorite
Quartz monzonite

interpolation 1201 RT —Additives Syenite
8T Numerica! analysis —Crystal defects RT —8asic rocks
NT Divided differences Crystal structure Phanerite
USE =Use preferred term: UF = Used For; BT =Broader Term: NT = Narrower Term; RT = Related Term. 209

ERIC
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Figure 5,04 Printed version c¢f the document in Figure 5.01

NGB8-38439*# TRW Systems Group. Redondo Beach. Calif.
FLIGHT PROTOTYPE MODEL METEOR FLASH ANALYZER
Final Report
F. N. Mastrup and C. D. Bass A4pr. 1968 195 p refs
(Contrsct NAS9-6532)
(NASA-CR-92364. TRW-05202-6015-R000) CFST!: HC $3.00 /MF
$0.865 CSCL 148

A flight prototype Meteor Flash Analyzer with a three-charnail
radiometer wes designed. constructed. and tested. Each channul
has video outputs to measure the intensity vi. time wvariaticn of
individua! meteor flashes: and there are a total of  maeateor data
channels for making related measurements. The fong waveiength
(iron) channel nearly coincides with the conventional spectral range
for photographic meteors. providing correlation with ground-based
observational data. Detection sensitivity for terrestrial meteors in
the iron channel is background radiation limited: and this appears
to yield superior sensitivity for the optical detection of meteors in
wavelength bands below the ozone limit at 29.30 u. For satellite
altitude of naut m. dutector field of view of 20°, and detector
aperture dia of 5 cm. limiting photographic meteor magnitude was
+3.3. with an inverse count rate of 5.6 min/meteor. At 600 naut
m. count rate is expected to be 22 min/meteor with a magnitude
of -1.1. Significantly larger count rates are expected for the
magnesium and Silicon channels. M.W.R.

Figure 5,05 Singular and stemmed forms of some words from
the document in Figure 5.04

singular form stenmed form
flight flight
prototype prototyp
model mnodel
meteor meteor
flash filash
analyzer analys
designed design
constructed construc
variation vari
measurement ‘ measur
photographic _ phctogra ph
providing provid
observational : observ
sensitivity sensit
detection detect
detector detect

O 5o 3 :
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Figure 5.06 Iength of the sample documents

Documz=nt Number <f characters NWumber of words
in deocument , in document

C1 957 133
02 663 89
03 931 136
oy i16L 166
05 1187 179
06 999 140
07 1208 169
ce 606 86
09 1062 150
10 267 33
11 852 127
12 1078 1%
13 1022 136
14 L2 62
15 49y 62
16 1288 207
17 1280 184
18 967 134
19 800 116
20 580 84

Total 7807 2556

Average 890 128




Figure 5.07 Distribution of Indexing Consenses oir Sample
Average number of indexers assigning a term: 2,31

Standard deviation: 2.23.

Number of Indexers Assigning

Document 12 3 4 5 __ 6 7 _.8 9 _10__11_.12
1 7 66 3 1 1 0 1 1 0 0 0 ©
2 “i1 66 ©o ©o0o o 2 o0 ©0 o o0 0o 1
3 23 5 s 2 2 ©0 1 © ©0 1 0 0
4 26 9 0o O ©O0O © 1 0o O0 ©O0o 1 o0
5 0 11 2 1 3 © 1 0o o 1 0 ©
6 i4 7 3 1 ©o 1 ©o ©0o O 1 2 0
7 i 4 ©O0 ©0O ©0 1 o 2 1 2 0 o0
8 i3 3 3 ©o 4 ©0o 1 ©0O 0 ©0o ©O0 ©
9 22 8 4 2 2 1 ©6 ©o0 o 1 © ©0
10 13 & 2 1 © 2 o © o0 o ©0o 1
11 1% ¥ 2 1 2 o0 ©0o ©O ©O0o 1 0 ©
12 25 4 S5 4 3 2 1 3 o0 o0 1 O
13 21t 14 3 1 4 o0 O ©O0O 1 1 © o©

1 13 1+ 2 1 o 1 o ©O0O 1 ©o 1 o0
15 +7 3 o 4 ©0 1 0 O 1 ©0o ©0 ©
16 18 7 2 0 *+ 1 o o0 1 o0 © 0
17 14 4 s 1 1 ¢ 2 o0 © o0 © ©
18 1 3 1 1 3 1 1 1 0o 0o ©0 O
19 f4 4 3 2 ¢ 1 o0 ©O ©0 2 © O
20 7 2z 2 1 T 1 0o o © o 1 o

s 7 5 10 & 2

Totals 327 132 47 24 27 15




Figure 5.08

Type of

Match_

3T
33
2T
23
HY
HA
M2T
M212
MAT
M1a

Totals

Number of Clue Cccurrences in Entire Sample

MN ST us ER NR RL_Total
o 0o 0 0 0 0 0

1 2 0 0 0 0. 3

5 6 0 0 2 1 14

61 73 17 10 Sy 105 320
324 Bug 149 243 600 1692 3256
2216 3246 1141 1845 509 11758 24715
215 297 84 180 285 988 2049
1632 2245 634 1087 2593 7352 15543
18 31 10 25 38 68 190
220 283 139 220 u98 208 2168
4692 6631 2174 3610 8579 22572 48258

(See Figure 6.01 for an explanation of acronyms.)

105

98



g9

Figure 5.09 Distribution of All Clue Occurrences in Docunents

A

Number of Occurrences/focumcnt for All Clues

Document 1 _2 3 ) 5 6 7 8 9 10+
1 508 254 73 61 16 27 16 12 3 21
2 465 222 777 46 18 10 2 4 4 10
3 575 256 188 117 23 u3 15 27 7 36
u 681 232 59 29 16 16 3 11 18 16
5 485 178 113 51 28 20 16 17 6 52
6 617 214 90 52 eu 35 4y 48 13 85
7 365 103 70 12 10 79 4 2 2 22
8 327 93 60 13 15 17 5 1 3 6
9 us0 264 34 127 11 3u u 15 4 24

10 349 88 19 3 8 0 1 2 0 8
11 598 397 89 Su 13 22 6 11 1 18
12 693 372 &7 71 24 18 10 12 7 27
13 936 183 296 78 40 64 13 11 25 38
14 312 40 14 10 ¢ 0 1 u 2 2
15 602 231 u2 24 6u 12 4 5 2 23
16 358 110 52 23 49 u 212 22 7 69
17 532 132 56 25 5 88 9 S 2 24
18 452 241 76 u6 28 24 12 9 1 13
19 746 183 1u9 51 22 27 7 6 6 29
20 449 152 103 26 9 1S 3 u 3 16

Totxls 10571 3945 1747 919 483 555 387 228 116 539

T e
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Chapter Six

CONCLUSIONS
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6. Conclusions
6.1 Introduction

This chapter discusseS the restlts of the models.
described in Chapters 3 and U-» To  simplify the foilowing
discussion and to save rebPeating 1long nanes, cach of the
clues has been assigned a bkief dJescriptive name. These
acronyms are listed in FiSurfe 6.01 (pages 122 and 123}

together with a fuller describtion of the clue.

~s
P
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6.2 Evidence For and Against Machine-Like Indexinn
6.2.1 Results of the Multiple lLinear Regression

Information about the major regression runs is surmarized

below.

A1l Indexers
6379 experimsental events
147 clue types with correlatlion greater than .0007
with dependent variable
muitiple corrxelation coefficient (R): 0.5386
square of correlation coefficient (R2): 0,2901

99% confidence interval for E: .5153 to .5611

Librarian Indexers
6379 experimental events
45 clue typés with correlation greater than .0007
multiple correlaticn coefficient (R): 0.5364
square of correlation coefficient (R2j: 0.2657

99% confidence interval for R: .5130 to .5590

Engineer and Scientist Indexers
6379 e¥perimental events
U6 clue types with correlation greater than .0001
multivle correlaticn coefficient (R): O.u4€74
sgquare of the correlation coefficient (R2): 0.213u

99% confidence interval for R: L4418 to .u4923

ERIC 109



Perhaps the most dramatic result is that none of the
samples taken shows eiﬁher a very strong ox a véry weak
correlation between the descriptors assigned and the
documents, At least for cur sample . linear regrssion
accounts for about thirty percent osf the indexing

assignments.

As expected, the librarians? ihdexing could be predicted
rore accurately from the clues than could the indexing of the
engineers ana scientists, The difference was significant at
the 99% level.‘ The inexperience cf the engineers aund
scientists with indexing and with the thesaurus may have made
them much more dependert upon vord~for-word matches between
the descriptors and - the document than otherwise might have
been the case. Hence our results are fprobably conservative,
Differences between librarians and engineers or Scientists

might be more pronounced under other experimental conditions.

It is difficult +to compare the results of our multiple
linear regression model with resulis oktained €from previous

studies because of a number <¢f differences in the studies.

First, there 1is presently not enough data on how the
sub ject conteut of the sample documents affects the results.
The documents used in our sample were in some instances
highly technical discussions of rather speciﬁic angineering

problens. The subject £ield of ocur documents'compares most

closely with the studies done by Slamecka and‘ Zunde (i963) .

o
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Unfortunately, they made only a cursomy exam :alt .. i L&

data from the vievwpoint o£f machine-like indexing.

S@condly, there is the problem of the size of the sample
2f indexers, We uUsed a total of 12 indexers, six 1librarians
and six engineers or scientisté. All twelve jindexed each of
the sample documents. Yo previcus study had such =z large

group of indexers.

Thirdly, most previous stundies 4id not account for the
ggg-assignment of indeX terms &= discussed in Chapter 2. The
effect of 1looking only =t assigned terms is Jemonstrated by
re-running the rtedgression dﬁ‘only the=ze experimental avents
which have an indexer value above zero. Two runs were made,
In the first. a term had to be assigned by at least one
indexer +to be 1included in the regression; in the second, a
term had to be assigned by at least ¢two indexers to be

included. Information about these two sub-samples is given

below.

At least one indexer assigned each term
591 expetimental events
6 clue types with correlation greater than .0001
multiple correlation coefficient (R): 0.5u86
square of the correlationFCQefficient (R2): 0.300°

85% confidence interval for R: .4896 to .6026

ERIC o111
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At least two indexers assigned each term

264 experimental eventé

47 clue types with correlation greater than .0001
multiple correlaticn coefficient (R): 9-5535
sSquare of correlation coefficient (R2): 0.3120

95% confidence interval for R: .4694 to .6363

As axpected, B2 increases as more of the indexeré agree
to assign a particular term but the results are not striking
or significaht. Because of the small number of experimental
evenis in which a majority of indexers agreed, and because of
the jatge number of independent varjiables, the confidence
intervals for these coefficients is ccnsiderably larger than

for the full sample size.

Fourth, although all of the above regressions tested the
effect of sixty possiblé clue types cb the indeiers, they
still could account for only about a third of the variance in
the indexing. This is in contrast to earlier studies vwhich
tock only one or two clue types into account., but which did
not consider the non-assignment of index teras. The effect
of the small number of clue types would, in-éeneral, be to
decrease the correlation between the élue tyres and <the
indexing. The inclusion of only assic~=24d index terms would
tend to have the opposite effect. This is probably why our

nunmer ical results are very roughly comparable to some studies

done with fewer clues and based on assigned terms,
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lastlye. it 1is also possible thdt there is a theoretical
maximum to the amount of indexing which can be matched with
document words., For example, wé can imagine a thesaurus
wvhich was specifically designed for a particular group of
documents. This imaginary thesaurus might contain only words
and phrases abstracted directly from the documents
themselves. In this case, there is little opportunity for
the indexer to assign a term not already in the document. He
could also imagine a second thesaurus which made it a rule
never to use a document Word or phrase as a descriptor.
Although such a thesaurus would probably be very difficult to
compile, it weculd guarantee that there was no correlation
between the index ternms assigned and the words or phrases in

the documents.

The EJC Thesaurus obviously lies somevhere between these
two extremes, It is quite possible, therefore, that there
could only be a certain number of matches between theyterms
and the document words simply because cf the nature of the
dccuments and the thesaurus; The extent of this theoretical
limitation on the amount of the potential match between the
dccuments and thé théséurus might account for differences

between results obtained by different experimenters,

113
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Be2e2 Results of the Combinatorial Model

The conmbinatorial model is based c¢cn Boolean comkinations
of the sixty clue types. Details of the best Booclean
eguation (produced according to the procedure described imn

Section 1#,3) are given below:

Best Boolean equation
Sampie size: 2048
Figﬁre—of-merit (non-trivial assignmentsf: «1611
Standard deviation cf £igure—of-merit: . 0353
Fraction of all predictions modelled (trivial and
non-trivial assignments): .6821

Case 22's: 12S

Case 3's and U4's: 651

In terﬁs of programﬁing, the Boolean combinatdrial model
was time consuming and difficult. Despite carefuvl program
design and coding, it toock over an hour of cpu time on an IRBHN
360/65 to OR u40C,C%, pairs of vectors, calculate a figure-of-
merit for each, and write the results on tape. Similar xun
times were required for each stage of ANDing and ORing.
éecause of these very‘lo:J computer ruus, £he combinatorial
model 3is not exhavstive. Instead, as ﬁiscussed.in Chapter &,
the best 300 vectors frbm the rrevicus stage were used to

calculate vectors for the succeeding stadge.

Another limitation of the combinatorial model was the

practical) limitation on the recording of coun% information

s
»
=t
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for each type of clue in a document. Equation 2.02 is based
on a zero/not-zZzero decision. Thus there is no difference in
the binary record between a clue type which occﬁrred Jjust
once and one vwhich occurred many times. Once again, this 1is
a practical decision necessitated by limited computer time.
The lack of clue caount information, however, makes this model

less rich than the regression model.

A limitation on +the samrple size for the combinatorial
model was alsc made for computational reasans. How=ver, the
particular sample *“aken was verified with the regression
modcl by running that model with both the 1limited and the
full data. The regression coefficient for the smaller sample
of 2048 was 0.5387, just 92.0C007 larxger than it was - for the
sample of 6397. The limited dample of 2048, therefore, is

representative of the full sample size of 6397.

The figure-of-merit based on non-trivial assignments (see
Section #.2 for definitions 6f "non-trivial" and Yfigure-of-
merit"hy is quite low. Theré were only a few case 2%s 'in the
best vector and a number of case 3's and U4's. Ls discussgd
in Section 4.4, the standard deviation of the'figure-of-ﬁerit
was calculated %y making use of the Central Limit Theoren.
Sixty-four samples of thirty-two each were chosen at random

from the large sample of 20u8. This produced the standard

deviaticn of the figure-of-merit of .0353.

The goodness of the model can also be judged in terms of

the number of case 1's and 2's divided by the total number of

Lio
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cases. This is the second figure-of-merit (called "fraction
of all predictions modelled")'intrcduced in Equation 4,02 1in
Sectiﬁn 4,2 This means that ouf of 20u8 possible indexing
decisions, the combinatorial mbdel duplicated 68% of +the
indexers? 'decisions. This wmethod of calculating this number
is more comparable with the ragression model and will Dbe

discussed in Section 6.2. 3.

It is unfortunate +that morxe computer time was not
available, If would have been interesting to repeat +the
combinatorial model for +the sub-samples used with +the
regression model and to compare the results. s can be seen
Efom the discussion of the relative importance of clues in
Section 6.3, the' combinatorial model has a more direct
inte;pretation of indexer behévicr than does the regression
mcdel. Perhaps further refinement of the programming and the
elimination of less valuable clue types may make it possible
tc include count information and larger sample sizes in a

future version of the combinatorial model.
6.2.3 Comparison of the Results of the Models

Primarily because the Boolean model 4id not make use of
the clﬁe count information in the documents, and because
"best" was defined differently in the two models, there is no
simple, direct comparison between the twc models. To make
the figures from the two modeis somewhaf more COmparable, a

second figure-of-merit was calculated for the Boolean model.

11§
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This is the number recur. < above and discussed in Section

4.2 as "fraction of all predicticons modelled",

Both the combinatorial and the regression models vwere run
on the same sample of 2048, The combinatarial model
accounted for 68% of all indexer dec:sions. That is, of the
2048 decisions, there were 1397 decisicns in which the model
correctly predicted what the indexers assigned, The model
assigned when the indexers d4id, and 4id ndt assign when they
didnt*t. For the same sample, the regression model had an R2
of 0.3069. In other words, approximately 30% of the variance
in indexing could be accbunted for by the regression, 1In
view of the different ways in which +these two percentages
were calctulated, the amount of indexing accounted for by the
two models may be comparable. The laower psxcentage obtained
from +the regression is probably due to the linearity éssumed

by this model.

In Section 2.5.3 we discussed the assignment rules tested
in the Bcolean and regression models and pointed ocut that in
some sSpecial cases the two mcdels are egquivalent. Each of

the four Boolean equations was taested for this equivalence

1

(that is, linear separability) with the Biswas (1971) method.

s

: None can be realized with a single threshold element, Hence
there is no direct mathematical egquivalence bhetween the two

models.

Neither of the models performed w&ll enoug¢gh to be useful

as a substitute for human indexing, L discussion of

117
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prediction with these models has, therefore, been omitted.
However, the values of A and of the B?s for the first five
steps of the regressioh,are tabulated in TFigure 6,905, Notice
that as each new variable is added the previous valwes of the
ccnstant and of the B's change. The regression is adjusted
at each stagé for the best fit; changing the coefficients for
the variables at each stage. 2aAs an example, let us take the
fifth step in the regression; All the variables are
positively related to Y. The higher the number of
occurrences of each of these five clue types, the more likely
the 1indexer to assign the descriptor. On the average, the
number of indexers assigning a term increases by one unit for
each three additional occurrences of a twc-word main term icn
the abstract, by two units for each additional occuarrence of

a stemmed header in the title, and so for+th.

The censitant and coefficients for the full'regression
equation are tabulated in the right-hand column of TFigure
6.02. “Since the regression egquation accounts fér such a
small percentage of indexer performance, this tabuiation is

not of much practical valye,

In summary, then, at least for 'this sample and this
rather large group of indeXers, we cannot model ver& much of
~echnical indexing with either a regression model or a
Boolean combinatorial model. Until ~¥e kno more about
differences between technical fields, fhe effect of the
thesaurus on the indexing, etc., it is invalid to a: 'ue thas¢

indexers in general act in a mechanical mannez.
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6.3 Relative Importance of the Clue Types

We have sbme specific evidence about +the relative
importance of the clue types from each of the nmodels. In
addition, We can compare thé clue typeé important in the
engineer/scientist'reqression with the clues important in the
librarian regression. (See Section 2.5.1 for a definition of
each clue type and Figure 6.01 for a table of all clue typeé

and their acronyms.)

We <can make no statements about {he value of some clues
in predicting indexing assignments because these clues did
not occur'in-the sample. There were nc title occurrences of
ény three-word descriptors, or of use, broadexr, ~ parrower or
related three-word terws in the abstract. Nor were there any
two-word title occurrences of use or broader +terms in the
document.. sample. (Sce Figure $5.08 for a summary of clue
occurrences in each of the documents.) Ncte that these would
be the dccument-thesaurus matches least 1likely to occur in
any sample because the matchAcziterion was the most stringent
(twvo and three word matches in the title and three word
matches in the abstract). Hote also that a high frequeucy of
a clue type does not mean +that the Clue is necessarily
important in pfedicting indexer pehaﬁior. There dc. howvever,
have ¢taq be enongh cccurreinces of a clue type to make that

clue of practical value in the prediction.

Figure 6.02, 6.03, and 6.0U list the clues wh- zh have a

correlation greater than .0001 with the Geren:. variable
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for each of the three major samp.es: all indexers Iibrarian
indexers, and engineer/scientisf indexers. These figures
also show the R2 at each.step and the incréase in R2 caused
by the addition of each variable to the regression, Although
the order of 4inportance varied from sample to sample, the

same clue types tended to be at the top of the list.

In all runs, a match of a twoc-word descriptor in the
abstract was the most important of the clues. This single
clue accountéd for £3 to 75% of the final value of R. Other
clues consistently occurred in the'top group of all +three
regres: J)n runs, They were modifierzlof use references in
the abstract, two-word use references in —the abstract,
modifier1! of broader terms‘in tte tit}e and modifier2 of the
stemmed term in the abstract, Althougﬁ.mai“ and étem two-~
word terms Ain “he tiile, main three-word terms in the
abstract and modifier1 use references in the title were also
in the top group, they are 1less imgonrtant because they
occurred infrequently in the sample. Thds main entries, use
references, modifiers1, modifiers2, and two and fhree word

phrases are most important clues in predicting indexerx

assignments,

There are also several clues which rank high in the
regression for all indexers, but which have quite different
'rankings wvhen the ewgin :xr and librarian regressions are
ccmpared although no test of statistical- significance was
made.,. These clues are stemmed header terms in the title, the

mai 1 term header in the abstract and the use term header in
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the abstract. The stemmed header in the title is rated 1low
by the iibrarians and high by the scientists; the main term

and use term headers in the abstract are rated high by the

scientists and 1low and mid-range frespectively by the
librarians. Apparently the header word of a descriptor is
treated differently by the librarians and scientists. Note

that there are no header clues in the tcp group agreed upon

by all indexers as important,

Let us contrast the clue ranking ci the regression model
with that given by the Boolean model. The best four Boolean
edquations are given below.
(MN 2A AND ST 2A)  OR (MN HA AXD MN M2T) OR (US M2T AND MN
HA)

(MN 2ZA AND ‘ST 2A) OR {(MN HA AND N %27T) OR (US M2T AND ST
HA) |

(MN 2R AND ST 2A) OR (MN HA :5C MN M2T) OR (US M2T AND MN
HA AND US M2R)

(MN 2A AM¥DR ST 2A) OR (MN HA AND MN M2T) Ok (US M2T AND ST

HA AND US M2R)

vhere:
MN 2A is a two-word main *erm in the abétract
ST 2A is a2 two-word stem in the abstract
MN HA is a nain term heaQer in the abstract
MN M2T is a main term modifier?2 in the title
Uus m27T is a use reference modifier2 in the title
US M2A is a use reference modifier2 in fhe absiract
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Fachh of <the top equations contains the same twvo ANDed
terms plus a third term which is varialkle. The clue <types
mentioned in all of the equations are main entries, stems or
use references. Narcrower, broader and related terms deo not

serve as good clues in the Bcolean equations.

The first of the BANDed exgressions 1is « very simple
requirement. If the descriptor has tvwo words. then it must
appear, as @a phrase, in the abstract of the doucument if the
descriptor is}to be assigned. (Recall +hat there were no
three-wbrd abstract 6r twvo-vword title cccurrences (see Figuyre
5.08) so that these clues 4did not occur 1inm high enough
numbers'to be represented in the final eguation,) 0f course,
the stem of any term occurs whenever the term itself occurs
by the‘clue defiﬁition rules in Section 2.5.1. The result is
consistent with the results of the regression model where
two-word main terms in the abstract account for allatge part

of the final value of the regressic:: coefficient,.

The second ANDed e¥pression represents a second way to
recoén;ze'a two-word phrase. The header for the descriptor
and the modifier?2 for that descriptor must be p:esent in the
document. Since most descriptoys ‘are two-word phrases, this
is simply another way of saying that the words of the p. rase

must be present in ¢the document.

The ‘third ANDed expression 1s variable, but always
contains 0S M2T and either MN HA or ST FAa. In two of thre

equations, US M2A is an additional ciue. Again MN HA and ST
' ";. ‘: , -
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HA are almost e¢gquivalent, so this 1last ANDed expression
be:omnes: (MN HA &and US M2T (and sometimes TS M2A)}. An
inspection of the use references and the main +terms when
these c¢clues occur shows that in many cases the moAdifier2 for
the main term was the same as the mcdifier2 fof the use-for
reference, For example: 'optiéal instruments? use ‘%optical
measurements'. Hence this ANred expfession once again
reduces to: find the two-werd descriptor <fhrase in the

docunmnent,

In summary, two-word phrases account for the largest
amount of indexing behavicr, Some pctentially valuable clue
lengths, such as three-word terms, do not occur aty all or in
large enough numbers to make possible a decision about their
value. Main, use and stemmed {erms are the most important
thesaurus relations. In general, broader, narrower and
related terms from the thesaurus are not very useful in
accounting for indexing behavior. Header terms are rated
differently by the tvwo sub-samples, but are not important for
the entire samp-'e. ¥inally, no generaiizations can be made
about the relative importance of title and abstract clues ;n

accounting for index2ar performance.
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6.4 T5:34iv3idual Documents and. Indexers

. The: r=gression. ceoefficients <cbtained for five randomly

selected ‘documents in the sample vere mgst interesting. The

pertinent information, is summarized below,.

. -Document Number

1 2 é& 14 20
experimental events: €22 622 . 622 622 622
signif. <lue typess 37 29 36 25 uo
corrazlation coeff.: - 6412 . 8574 .7228  .7868 .908y
R2: , . .4111 7351 .S5224  .6190  ,B252

lower 99% conf. int.: .5760  .8274  .6695 . ,7440  .888S
upper: 99% conf. dint.: .6983 . 8825 « 7687 .8232 . 9249
most important clues: MN HA MN 20 . RL 2A  US. 2A MN 2T
Us. 2A US MTA RL M1T WMN HA Us 23
MN M2A HMN M2T MN M1T HMN HT. NR MIT

M¥ 22 BR M1T MN 2A. BR HA ST HA

. The significance of a clue type depends upon its cont tion
to the total  rTegression. : 2 clue type was considered
significant if it hgd a correlation of at least .00071 with

the dependent variable,

Note that the most important ciue types and the
correlation coefficients vary widely from document to
document. In general, the correlation coefficient is

considerably higher for an individual doc :ment than it is for

the sample as a A whole. . This means  that the regression

]

i
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coefficient for all the documents is very much a compromise.
The compromise lowers the overall coefficient because clues
which work well on some documents don't work well on others.
As we noted 1in Section 3.5, this fact decreases the

predictive value of'this model.
Separate regression runs were made on the indexing of
four of the subijects. some details of these runs are

summarized below,.

Indexer Number

- —_ [} 7 11
experimental events: 6379 6379 6379 6379
signif, clue types: 43 us 07 : 48
correlation coeff,: . 3487 . 4646 «3120 . 2799
RZs A o216 «2158 - « 0974 . 0783
locwer 99% conf. int.: .3200 .4389 «2825 .« 2089y
apper 99% conf. int.: ,3768 . 489¢€ « 34909 « 30914

For -each indexer MN ZA.was the top clue, accounting for
70, 78, 64 and 59% respectively of the correlatiocn
coefficient for the four indexers. after this élﬁe, however,
there were substantial differences among the top group of
clues in the regression, The uniform use of MN ZA as the

most important clue probabliy accounts for the <op ranking of

that clue in th. over-all regression runs.

The fact that euc)r indexer exhibited a low corrtrelation

coefficient as an individual, while single documerts had high

L295.
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correlation coefficients indicates that there tends to be a
comnmon reaction o a single document, bu<t that averaging .
across documents tends to decrease the correlation
coefficient because the average is a comnpromise 1in clue
styles among the documehtso Individue” indexers tend to be
iess predictable than an indexer group because 2one person'’s
idimsyncrasies are not averaged with another's

idiosyncrasies.

ok
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6.5 Some Suggestions for Further Research

This dissertation concentrated on textual clhes to the
exclusion cf other types of clues (such as syntactic).
Further investigation of other types of clu:s might help
explain the existence of distinctive‘ clue styles in
individual documents. . ¥hen these styless can be recogr:ized
from information about the document itself, we will have a
better understanding of how an indexer does about indexing.

Rlthough +the Boolean model is of much interest, a
shortage of computer time prevented its full development.
Further research mnight uncover practical improvements to
speed up or to simplify the A¥Ding and ORing programs so that

a more extensive development of this wodel could be made,

our research Qas linited to an exploratiocn of twenty
documents in the rather narrow subject field of
instrumentation. Since wvariations in indexing style are to
be expected across subject fields, it would be interesting to
build similar models in othier subject f£fields and to compare

the results.

Neither +he regression noyr “he Boole n combinatorial
nodels could bz considered very accurate models of human
indexing. Howvever, as can be seen from Figure 5.07, humans
theuselves don*t agree as to which index terms should be
aasicned. Inaccurate though these models are, it would be
interesting to use tihem predictively and to ask humans how

' %
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they rated the indexing derived from this mechanicsl source.
Perhaps these  molels produce indexing no worge +thar a
human? s.

There is an implied "theory of the indexer' in this study
which assumes that the indexer can be modelled Ly some

combination of te

=
o

ual clues. The object of the
investigation was to find cut which clues were most important
and' how much of the indexing they accounted for. This is a
very elementaty zheory of how indexing proceeds. A future
study could begin to lay down a much more sophisticated
theory of the indexer with some of the evidence available
from this dissertatione. For instance, two-word terms seem to
be the most dependable for purposes of predictioh.- Suppose
we start with a model to predict just two-word terms. We
might say that if the térm ander consideration is a two-word
term, then if that term, or if a stemmed version of that term
is in the documenf, 'then the term should be assigned.
Further elaboration of this simple flowchart model cduld be
tested zgz2inst the actual index ¢terms assigned until some
reasonable fit occurred. We could then test this flowchart
mcdel against other indexers to 1learn how accurate and

complete it is.

128
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Figure 6.01 Clu: Types Used in the Two Models and the
Acronyms Used for Themn

numberx AcCToONym descripticn
1 MN 3T three-word main descriptor entry in title
2 MN 31 three-word main entry in abstract
3 MN 2T two-word main entry in title
U MN 22 two-word main entry in abstract
S MN HT header word :in title
& MN HA header word :in abstract
7 MN M2T modi fier word of main entry in title
g MN M22 modifier2 word of main entry in abstract
9 MN MIT modifier1 word of main entry in %title
10 MN M1A modifieri word of main entry in abstract
11 ST 3T three-word stem descriptor in titie
12 ST 32 three-vord stem descriptor in abstract
13 sT 2T two-word stem in title
14 ST 2A two-vword stem in abstract
15 ST HT header stem in title
16 ST HA header stem in abstract, ‘
17 ST M2T modifier2 word of stem in title
i8 ST M2A modifier2 word of stem in abstract
{Q ST M1T modifier1 word of stem in title
20 ST M1RA nmodi fier1 word of stem in abstract
21 Ugs 3T three-yord use reference in title
22 uUus 32 three~-word use reference in abstract
23 Uys 27T two-word use reference in title
20 Us 2A two-word use reference in abstract
25 UsS HT header of use reference in title
286 Us HA header of use reference in abstract
27 Us M2T mnodi€fier2 word of use reference in title
28 USsS M2Aa modifier?2 word of use refercnce in abstract
z2Q Us MAT modifiert word of use reference in title
30 Uus M1A mnodi€fier? word of use reference in abstract
31 BR 37T three-word broader Tterm in title
32 BR 3A three~word broader term in abstract
33 BR 27T two-word broader term in title
3n BR 2A tvo-word broader term in abstract
35 BR HT header word of brcadey term in title
36 BR Ha header word of broader term in abstract
37 BR M2T modifi—~r2 wcrd of broader term in title
38 BR M2A modif.er2 word of broader term in abrstract
3< BR M1T modifier1 word of broader term in title
uo BER M1TH rodifier1 word of broader term in abstract

Jomic
Do
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Figure €.01 Clue Types Used in the Two Models and the
Acronyms Used for Ther (continued)

number acgonym descriptign

a1 NR 3T three-word narrower term in title

42 NR 33 three-word narrower term in abstract

43 NR 27 tuo~-word narrower term in title

uu NR 221 tvo~-word narrower term in abstract

ns NR HT header of narcower term in title

u6 NR HA header of narrower term in abstract

u7 NR M2T modifier2 of narrover term in title

48 NR M2k modifier2 of narrower term in abs<tract
o9 NR #17 modifier1l of narrower term in title

50 NR M1a modifier1l of narrcover term in abstract
51 RL 3T three-word related term in title

52 RI, 23 three-vword related term in abstract

53 RL 27 two-word related t=rm in title

54 RL 21 two~-word related term in abstract

55 RL HT header word of reianted fterm in title

56 RL HA headeyr word of related term in abstract
57 RL 12T modifier?2 word of related term in titie
58 RI M213 modifier2 word c¢f related term in abstract
59 RL MIT modifieri1 werd of related term in title
60 RL M3A modifierl1 vord of related term in abstract

ERIC 130 7
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Figure 6.%2 Relative Importance of Cluz Types for
A1l TIndexers

clve R__ __RZ2_ Increase B _Coefficient
in_RZ2 of Eull Eguztion

MN 24 . 3863 . 1592 1492 1.81124 (A=0,05118)
Us M2a 4347 .1890 . 0397 0.08572
ST HT 4565 . 2084 .0194 0.18623
Js 2h ~U771 « 2277 »01G3 2.69215
Us MI1T «8901 . 2002 .0126 1.872€1
ST M2T « 4998 . 2498 . 0096 Q.09849
MN HA « 5060 « 2560 . 0062 0.,0u4049
BR MIT « 5097 . 2598 .0038 ND.8u427 -
7S HA «5126 . 2628 .0030 0.05867
ST 2T « 5153 « 2655 . 0027 6.79555
MN 2T 5197 « 2701 ., 00146 , ~5,80765
ST ¥2A 5224 «2729 - .0028 C.0u035
"N 33 «5247 « 2753 .0025 S5.45449
Us M2T «.5269 « 2776 -+ 0023 0.34074
UsS M11a .5288 « 2796 .0020 0.10880
RL Z2 « 5302 . 2811 .3014 0,255n0
ST 22 «5H5312 . 2822 LCN 11 0.72928
BR HT _ « 5321 . 2831 -~ 0010 -0,.13666
MN MIT «5329 . 2840 . 00C 0.31201
RL M2T « 5336 .28407 . 0006 0.06040
RL 2T . 5342 . 2854 0007 ~2.,23822
NR HA .53u8 . 2860 . 0006 0.00686
MN HT «5353 . 2865 .0005 0,22254
ST HA « 5357 »287C «C00S5 . 0.03u465
MN M2T « 5361 .2874 .000U4 0. 14794
UsS HT «.5364 .« 2877 .000CH -0,.13123
RL HT . 5367 . 2881 »O0C 0.03457
MN M12 « 9370 . 2884 «0C 0.07221
NR MIT «5372 . 2886 . 0C ~-0.23186
NR HT .5374 .2888 o 0C ~-0.01565
T MIT .5376 . 2890 .0 D.12045
¥R 2T .5378 « 2892 o0 2 ~0.,79571
R1 H2 «5379 .2894 o0 2 -0.003482
ST 32 5380 « 2895 0 1 ~1.62292
NR M1A .5382 . 2897 .0 V2 . ~-0.23186
BR M2A « 53383 . 2898 «0.01 0,01967
BR HA 5384 . 2899 » 0001 ~-0.,01159
MN M2A . 5384 « 2899 . 0001 0.02115
R MZA . 2388 « 2900 »00C1 -0.,00404
BR %27 . 5385 « 2900 0001 -0.02564
NR M2T «5385% « 2900 - 0000 0.01266
BR 21 .5386 » 2900 .0000 -C, 10282
ST MAT 5386 « 2901 .000C 0.09310
RL M12 . 5386 « 29017 .QCO00 0.00524
BR M1A 05386 02901 «00CC ‘0'00881
ST M1R 5386 . 2901 « 0000 -0.,01367
NR 21 .5386 «2901 0000 -0.,01191
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Figuare 6,03 Relative Yuportance of Zlue Types for
Librarian ITndexers:

~Clue _RrR____ ——R2_ Increase
in_RZ2
MN 217 .u068 .1659S . 1655
Us 22 24558 .« 2077 .ou23
ST HA . 43735 . 2282 . 0165
US M21A .4889 « 2390 .0148
ST M2A . 4978 . 2478 . 0087 -
UsS MIT .50u6 « 2586 .0068
ST 2T . 50987 . 2598 .0053
MN 27 .5139 . 26041 .00Uu2
MN HT .5180 . 2683 . 00u2
ST 22 .5207 W 2712 - .0029
BR M1T .5226 « 2731 .0019
RY M2T7 .5242 .« 2748 ., 0017
MN 317 .5257 . 27604 L JOY L
MN MI1T «5271 « 2778 .001u
Us M11a .5283 « 2791 .0C13
ST M2T .5293 . 2801 .0010
US HA .5302 . 2812 . 0010
BR HT .5310 . 2820 .0008
NR MIT .5316 . 2826 - 0006
NR M23aA .5323 . 2833 . 0007
US M2T . 5327 .2838 .0005
U0S HT .5332 .28u3 . 0005
MN M2A .5336 . 2847 .0004
BR M2A .53u0 . 2851 .0004
RL 27 .53Uu3 . 2855 .Q00u
R1L 2T .53u47 . 2859 .0004
BR HA . 5350 .2862 .0003
NR HA »5352 . 2864 .0002
NR 2A .5354 . 2866 . 0002
NR HT .5356 .2868 .0002
RL HT .5357 . 2870 .000C1
RY HA .5358 .2871 .0001
ST 3A 5359 . . 2872 . 0001
MN HA .5360 .2873 .0001
ST HT .5361 .2874 « 0001
NR M2T .5362 . 2875 .0001
RL M1A .5362. . 2875 .0001
RL M22 ~ .5363 .« 2876 » 0001
MY M1A .5363 .« 2877 .0001
NR M1A .5364 . 2877 . 0000
NR 2T .5364 . 2877 .Q000C
RL M1T .5364 . 2877 .0000
MN M2T .5364 . 2877 .0000
BR M1A . 5364 ) « 2877 . 0000
BR M2T .53604 .2877 . Q000
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Figure 6,008 Reiative Importance of Clue Types for
Engineer and Scientist T ndexers

~clue. __R___ Rz __ Ipcrease
| in R*®
MN 22 .2926 . 0856 . 0856
Us M2A 3506 « 1229 «.0373
ST HT » 3808 » 1450 «. 0221
GS M4T « 3998 . 1598 01488
MN M2T  .4109 . .1688 . 0090
Us HA .u274 « 1776 <0088
Us 2A « 4301 < 1850 «C07Y
BR M1T sU362 « 1903 .0053
MH HA . 4399 .1935 .0032
us M2T s032 . 13864 . 0030
MN 33 .u6n . 1993 .0028
R 2A - 489 « 3015 . . 0023
sT 2T - 506 « 2031 « 0015
MN 2T .uUSu6 » 2067 0036
ST M2A U560 . 2083 «.0016
MN M1A 4579 « 2097 0014
BR HT 4594 « 2111 -.0C18
RL M1IT  .4605 . 2120 .0010
RL HT .u61i4 22129 - 3008
RL 27T 24623 2137 . 0008
NR 27 U631 « 2745 . 0008
WR HA 4639 « 2152 . 0007
US M1A .46uU5 « 2157 . 0006
RL M2T  .4649 .2161 .000n
NR 22 - 4653 .2165 . 0004
NR M2T 4655 « 2167 « 0002
NR M2A  .U4658 .2169 .0003
NR #M1A L4659 « 2171 « 0001
ST 3A U662 « 2173 . 0003
WR HT 2664 « 2175 « 0002
MN HT U666 « 2177 : « 0002
NR MAT 1667 « 2178 « 0001
US HT .u668 . 2179 .0001
BR M2T  .4669 . 2180 .0001
R M2A 4670 - . 2181 «0CO1
BR 2A .4571 .2182 .0001
ST M1T sU671 « 2182 s 0001
RYI HA L4672 « 2183 « Q001
BR M1A LU672 « 2183 « 000"
MN M2A U673 . 2184 « 0000
RL M2 8673 « 21804 « 0000
ST HA LU673 s 218104 « 0000
BR HA L4673 « 21814 » 0000
ST M2T 4670 . 21810 « 0000
MN MIT JU670L .2184 - 000C
ST M1A 4674 .2184 .Q000




Figure 6.05 The First Five Regression Equations

AR

\\

\\\ Steps or Number of Variables in Regression
variable N 1 23 4 5 )
constant ‘"KQ“WSHGB 0.15769 0. %2279 0,12152 0.12027
MN 21 3.09?&%\\3.01652 2.36815 2.93191 2.90239
UsS M2A 0. 27927 0.27808 0.22456 0.19035
sT HT . : » 0.50526 0.50823 » 50695
Us 22 | 2,52321 2.64097
US MI1T . . 2.76123
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Appendix
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Eppendix. Changes to lovin's Stemning Procedures

This appendix sunwmarizes cnly the ckhanges and additions
to the =tems, cocdes and rules proposed by Lovin £70568) . The
original paper shoﬁld be consulted for a complete description
of the procedaures and tables. These changas were requixxed by
the vocabulary of the documents and thesaurus used in this
thesis. The effect cf each proposed change to lLovin'’®s
prccedures was tested on Brown®s "Normal and Reverse English
Word ListY (1963) to guarantee that *he intended change wvas
not a parochial one.

The procedure used in Secticn 5.2.3 for stemming document
and thesaurus vords is dependenpt upcn a table of stems, a set
of condition cecdes and a group of recoding rules; A word to
be stemmed is compared with the table cf stem endings. The
object is to obtair the l~-ngest possible match ketween the
end of a word and an ending in the table. With each ending
in the table is an associated "condition code". This code
specifies the conditions tc be met for that particular stem.
An ending is rejected if the conditions for that ending are
not met. If the ending passes the condition code test, +the
remaining stem _is sub jected tc the recodipg rules to-
standardize spelling variations.

The following three tables give the changes and additions
to the endings, condition codes and recocding rules used by

Lovin.

|
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Additions and Changes to Endings and

ationshnip
mentation
ications
ological
icantly
ination
ionable
ionless
alized
atures
earity
ements
erized
inants
mental
ologic
atics
icals
ivity

mets
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p
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oy
ben
1]
Hel

oides
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Condition Codes:
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Additions and Changes to the Condition Codes:

not after ve? upless °'gr* precedes 'e?

only after

‘v, 119 g *r*

do not remove after "'u','x%°,'s? unless 's' follovws

*'o? and minimum stem length is 3

minimum stem iength is 3 and reimove only after

BE
H
L
R
'n°-0t
v remove
DD remove
except
EE deo not
Additions
Sa change
15 change
24 change
31 change
32 change
35 change
36 change

!r!

only after ¢c?® or *c*
only after e, ,vz*
af er 'met?

remove after ua®* or te®

- 7es to Reccding Rules:

*ript* to *rib¢
'ex? to 'ec' except after *1°
tens®

*end®' to except after *s' or

'lt'.ﬂrff'hfo'w"!g'

QtLY,

.m'

'ert' to vYers' except after *v' or *p!

et ta tes®

*mart' to *mar’?®

tary' to 'ari’

138

except after ‘n' or 'k°*

131



132

BIBLIOGRAFHY

Q. 139
ERIC




133

Artandi, Susan: Automatic bock indexing by computer,
Lmerican Documentation 15:8 (1964 October) 250-257.

Artandi, Susan: Computer 3indexing of medical articles -~
Project MEDICO. Journal of Documentation 25:3 (1969
September) 214-223,

Baxendale, P.B.: Ma.chine-made  index for technical
literature - an experiment. IBEM Journal of Research
and Development 2:4 (1tS8 October) 35u4-361.

Baxeiidale, Phyllis: An enpirical moecdel for computer
indexing, In: Third Institute on Information Storage
and Retrieval, Machine Indexing: Progress and

Problems, 13-17 February 1961. American University,
Waghington, D.C. {1962) 207-218.,

Baxendale, P.B. and L.C. Clarke: Documentation for an
economical program for the Iliimited parsing of
English: Lexicon, grammar, and flowcharts. IBM, San
Jose, Calif. (1966 August 16) Research Report RJIJ-386,

Becker, Joseph and Robert M, Hayes: Information storage and
retrieval: tools, elements, theories. Wiley {1963} .

Bernier, Ccharlés lL.: Indexing proc«ss evaluation, American
Documentation 6384 (1965 October) 323-328,

Biswas, N.N.: Testing and realization of threshold
functions by the canonical composition matrix. Paper:
submitted to the IEEE Transactions of Electronic

Coniputers (1971) .- Department . of Electrical
Engineering, St. Louis University, St Louais,

Missouri.

Bloomfield, Masse: Simulated machine indexing, Parts I
through IV, Special Lihraries 57:3 (19&86 March}) 167-
171 57:4 (1966 April)  232-235; 57:5 (1966 May-June)
323-326: 57:6 (1966 July-Rugust) 400-u403.

Bottle, Robert T.: The informaticn content ot 2% ... the
engineering literature. IEEE Transactions on
Eugineering Writing and Speech 1332 (1970 September)
41-45, ' - :

Browin, A. ¥, (compiler): Normal and reverse English word
list., Prepared at the University of Pennsylvania
under a contract with +the Air Foxce 0Office of
Scientific Research. (AF 49 (638)-10u2), 8 volumes
(1963) . ‘

Carroll, J.B.: “he nature o¢f ‘data, or how to choose a
correlation coefficient. Psychometrika 26 (196171)
IuTG~372.




Cla ke, D.C, and R.E. ¥all: An =sconomic program ic che
limited parsimg of English. afLPS Conference
Proceedings, VYolume 27, Part 1e 1965 Fall Joint
Computer Conference, 307-316,

Damerau, Fred J.: An experiment 1n automatic indexing.
American Documentaticn 16:=:4 (1965 October) 283-289,

Dennis, S5ally ez The ccnstruction of a thesaurus
automatically €rom a sample of <text. In: M.E.
Stevens tede )z Statistical Associaticon Methods for
Mechanized Documentation, Symposium Proceedings, 17 -
19 March 1964, U.5. Government Printing oOffice,
Washington, D.C. {1965 December 15) National Bureau
of Standards Miscellaneous Publication 269, €1-148,

Dennis, Sally F.: The design and testing of a fully
automatic indexing-s&arching system £for documents
consisting of expositcry text. In: Gevrge Schector
(ed.) * Information Retrieval, A Critical Review.
Based on the Third 2aAnnual National Colloquiuym on
Information Retrieval, 12-13 May 77966, Philadelphia,

Pa. Thompson Bock Company, Washington, D.C. (1967)
Dixon, He Jdo (ed.) BMD Biomedical computer progranms.,
BMEO 2R, Stepwise regressicn. University of

California Press, Berkeley (197¢C) 233-257.

Dovyle, L.B.: Library science in the zomputer age. System
Development Corporation, Santa Mornica, Calif. (195°2
Decembexr 17) Report SP-141,

Draper, N.Ro. and He. Smiths Arpliec regression analysis.
Wiley (1966} .

Edmundson, H.P. and R.E. Wyllys3: Automatic abstracting and
indexing - survey and reccmmendationse. Communica-
tions of the ACM 4:5 (1961 May) 226-234.

Edwards, Allen L.: Statistical methods, seconé edition.
Holt, Rinehart and winstcn (1967).

Efroymson, M.A.: Multiple regression analysis. - In: Anthony
Ralston and Herbert S, Wilf (eds.) = Mathematiczl

L

methods for digital computers. Wiley (1960 191-203.

Engineers Joint <Council: Thesaurus of engineering and
scientific teruns, first editicn. EJC, New York (1967
December) .

Fangmeyer, Hermann andg Gerhard ZIustig: The EURATOM
automutic indexing project. In: A. J. H. Morrell
icde) 2 Information Processing 1968, Proceedings of
the IFIP Congress. North-Holland Puklishing Cowmpany,
Amsterdam (1969) 1310-1214,




Fels, Eberhard M. and Joan Jacchs? lLinguistic statistiCs oOf
legal indexing. Uniwversity of Pittsburgh Law Review
28 (1%63) 7771-7917. ' '

Ferber, Robert: Market research., McGraw-Hill (1949j.

Fisher. R.A.: On the "probable errcr" of a coefficient of
correlation. Metron 1:4 (71S21) 1-32. :

Graves, Roy %. and Lonald P, Helander: 2 feasitkility Study
of avtomatic ~indexing and information fetrifval,
IEEE Transactions of Engineering Writing 2nd skeech
1322 (1970 Septemker) 58-59,

Harris, Z.S.: Linguistic transformations for iffcocrmadtion:
retrieval. ITn: Proceedings of the International
Conference on Scientific Information, 16-Z1 Novenmber
1958. National Academy of Sciences - Natvional
Research Council, Washingtcn, D.C. (1959) v.2, S$S37-
950. - ‘ '

Hays, Wiliiam L.: Statistics for psychologists., Holt,
Rinehart and Winston (1963).

Hooper, R.S.: Indexer consistency tests ~ orlgin,
measurenmernts, results and utilization, IBM
Corporation, Bethesda, Md. (1965} Report TR-95-56,

Houstcon, Nona and Eugene Wall: The distributich of term
usage in manipgylative indexes. Amel:ican
Documentation 15:2 (1964 April) 105-114,

Jones, Paul E.. and Robert M. Curtice: A frafework for
ccmparing term assqQciation mea sures, . AmeXican
Documentation 18:3 (1967 July) 153-161.

Jonesy Paul. Ee v Vincent E. Giuiiano and RObert. N,

Curtice: 2utomatic language processing, Part Iz
Selected collection statistics and data apal¥ses,
Section IX: Comparison of mwmanual and ma<hine
selected vocakularies. American Data PXocesSing,
Detroit (1970) 31-u5.

Kiingbiel, Paul H.: Machine-aided indexing. Detense
Documentation Center, Defermnse Supply Ag&€ncy,
"Alexandria, Virginia (1969 June) DDC-TR-69-1, BD 636
200.

Klingbiel, Paul H. ¢ Machine-aided indexing. Defense
Documentation Center, Defense Supply igency,
Alexandria, Virginia (1971 March) DDC~TR-71-3, BD 721
875. B



136

Kuhns, J.Ll.2 The continuum of coefficients of association.

In H.E. Stevens (ed.j Statistical Association
Methods for Mechanized Documentatior, Symposiun
Proceedings, 17-19 laxrch 1960, U, S. Government
Printing Office, ¥ashington, D.C. (1965 December 15)

National Bureau of Standards Miscellaneous
Publication 269, 33-39.

lLewis, PeA:s Wey A.S. Goodman and J.K. Miller: A pseudo-
random number generator for the System/360., IBM
System Journal 8:2 (1969) 136-1746.

Levwis, P.M. and C.lL. Coates: Threshold logic, Wiley
(1967 -

Lovins, Julie Beth: Develogpment of a stemming algorithm.
Meachanical Translation 1i:1 and 2 {1968 March and
June) 22~-31t. '

Luam, VeYe, P.S.T. Yuen and M. Dodd: Key-to-~address trans-
formation technigues, a tundamental performance study
on large existing formactted files. Communications of
the ACHM 14: (1971 3pril) 228-239.

Luhn, He P,2 B statistical approach to mechanized encoding
and searching of library information. IBM Journal of
Research and Development 1:4 (1957 October) 309-317.

L.uhn, H. P.: The autaomatic creation of 1iterature ab-
stracts. IBM Journal of Research and Development 2:2
(1958 April) 159-165,

Luhn, H. P,: Potentialities c¢f autc-encoding of scientific
literature. IBM, Yorktown Heights, VN.Y. (1959 HMay
15 Research Report RC-101,

MacMillan, Judith T. and Isaac D. Welt: A study of indexing
procedures in a liaited area of the medical sciences.
American Documentation 12:1 (1S61 January) 27 -31.

Meyer-Uhlenried, K.H. and G. Lustig:s . . =%, . wudexing and
correlation of information, In: H.P. Luhn (ede) 2
American Documern“atioan. Institute, 26 th Annual

Meeting, Automaticn and Scientific Communication, 6-
11 October 1963. . ADI, Washingtom, D.C. (1963) part
2, 229a

Montgomery, Christine and Don R. Swanson: 'Machine like
indexing by —fceofle. American DocumeZitation 13:24
{1962 October) 359-366,

‘O Connor, Jonn? Some suggdgested mechanized indexing
investigations which require nc machines, American
Documentaticn 12:3 (1961 July) 1°9€-203.

143

R I




137

O'Connoyg, John: Some .remarks on machanized indexing and

scne small ~-scale empirical resuylts. In: Thivd
Institute on Informaticn Storage and Retrieval,
Machine Indexing: Progress angd problems, 13-17

February 1961. American University, Washingtoan, D.C.
(1962) 266-279.

Oof'Connnr, John: Correlation of index headings and title
words in 4¢hree medical indexing systems., American
Documentation 15:2 (1964 April) 96-104.

O*Connor, Johnz Automatic subject recognition in scientific
papers: an empirical study. Journal of the ACM 1234
(1965 October) 490-515.

Ostle, Bernard: Statistics in research, second edition.
Towa State University Press, Ames, Iowa (1963).

Penn, Carol A.: How an indexer thinks in descr'ibing infor-
mation, in framing search questions and in conducting
searches. Jcurnal of Chemical Documentation 2:48
{1962 Cctober) 220-2204.

Raduchel, William J.32 Efficient handling of binary data.
Communications of the ACM 13:12 (1970 December) 758~
759Q " .

Rees, Alan M.: Relevancy and perxrtipency 1in indexing.
American Dccuméntation 13:1 (1962 January) 93-94.

Salton, G.: Automatic inforwmation organizaticn and
retrieval. McGraw-Hill (1S68) .

Salton, G.: . Automatic +text analysis. Science 168: 3929
(1970 April 17) 335~-3u3.

Scheffe, Henry: Avalysis of vari nc .. Wi~ _ i9) e

Shapiro, Paul B., Irwin D.J. Bross, Roger L. Priore and
Bapbara B. Anderson: Information in na=-ural
languages. Journal of the American #a 1imal

Association 207¢11 (1969 March 17) 2080-2084,

sSimrons, Robert F.: Natural language guestion-an< z..ng
systems: - 1969, Communications of the ACHM 13z (.370
January)} 15-30.

Siarecka, V. and P. Zunde: Automatic subject indexir. :Zronm
tevtual condensations.. In: H.P. Luhn (ed.)3 Arar:>can
Documentation Institute, 26th Annual Me:z% _ng,

Automaticn znd Scientific Communica*.ion, 6-11 Cziober
1963, ADY, Washingtom, D.C. (1963) Parxrt 2, 12%-740.

©%. - Laurernt, Mary Cuddy: A review of che literat = of
indexer consistency. University of Chicago Mz -ter's
Dissertation (1966 Jyne) PB 174 395.

w, gL ¢

E Q 'iqlélf




138

Stevens, Yary Elizabeths: Autoratic indexing, a state-of -~

the-art report, U.S. Government Printing Office,
Washington, D.C. (Reissued with corrections, 1970
Fabrgary) . National Bureau of Standards Monograph
No. 91,

Stone, Don Charles: Word statistics in the generation of
semantic tools for infsrmation systems. University
of Pennsylvania, Philadelphia (1967 December) AD 664
21S.

- Stone, Don C. and Morris Febinorf: Statistical generation
of a technical vocabulary. American Documentatiocon
1934 (1968 oOctober) U411-412,

Swanson, Dan  R.: Szaxching natural language text by
computer., Science 132: 3434 (160 October 27%) 1099 -
1104,

Swanson, Don R.,: Interrogating a computer in natural
language-. Ins Cicely Me Popplewell (ed.) =
Information Processing 1962, Proceedings of the IFIP
congress. North-Holland Publishing Company.,

Amsterdam (1963) 288-3293,

Swanson, Don R.: Automatic indexing and classification.
Preprint, NATO Advanced Study Institute on Automnatic
Document Analysis, 7-20 July 1963, Venice.

Torng, H.Ce.:2 ANn approach for the realization of linearily-
‘ separable switching functions. IEEE Transactions on
Electronic Computers i5:1 (1966 February) 14-20.

U.S. Government Research and Development Reports,
Published semi-monthly by +he Clearinghouse for
Federal Scientific and Technical Information,

springfield, Vva. (Title changed 1971 March 25 to:
Government Reports Announcements. Now published by
the Natjional 7Technical Information Service.) -

U. s, Government Research and Development Reports Annual

Subpiject Index 69:1-24 (1969 January-December).
Clearinghouse for Federal Scientific and Technical
Information, Springfield, Va. (Title changed 1971
March 25 to: Government Reports Index. Now
published@ by the National Technical Information
Service,)

Wilson, Patricks Two kinds of power, an essay o©n
bibliographical control. University o% California

Press, Berkeley (1968) 69-92.

Wyllys, R.E.: Research . inr technigques for improving
auwtomatic abstracting procedures. System Development
COLDs» Santa Monica, Calif. . (1963 April 19) Report
T™-1987,/Q000,01. '

145




139

Zunde, P.s automatic indexing from machine readable
abstracts of scientific documents, Documentation
Inc., Bethesda, Md. (1965 September) 2D 481 148.




